当前位置: 首页>>代码示例>>Python>>正文


Python variable.Variable方法代码示例

本文整理汇总了Python中torch.autograd.variable.Variable方法的典型用法代码示例。如果您正苦于以下问题:Python variable.Variable方法的具体用法?Python variable.Variable怎么用?Python variable.Variable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.autograd.variable的用法示例。


在下文中一共展示了variable.Variable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: m_ggnn

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def m_ggnn(self, h_v, h_w, e_vw, opt={}):

        m = Variable(torch.zeros(h_w.size(0), h_w.size(1), self.args['out']).type_as(h_w.data))

        for w in range(h_w.size(1)):
            if torch.nonzero(e_vw[:, w, :].data).size():
                for i, el in enumerate(self.args['e_label']):
                    ind = (el == e_vw[:,w,:]).type_as(self.learn_args[0][i])

                    parameter_mat = self.learn_args[0][i][None, ...].expand(h_w.size(0), self.learn_args[0][i].size(0),
                                                                            self.learn_args[0][i].size(1))

                    m_w = torch.transpose(torch.bmm(torch.transpose(parameter_mat, 1, 2),
                                                                        torch.transpose(torch.unsqueeze(h_w[:, w, :], 1),
                                                                                        1, 2)), 1, 2)
                    m_w = torch.squeeze(m_w)
                    m[:,w,:] = ind.expand_as(m_w)*m_w
        return m 
开发者ID:priba,项目名称:nmp_qc,代码行数:20,代码来源:MessageFunction.py

示例2: rotmat2quat_torch

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def rotmat2quat_torch(R):
    """
    Converts a rotation matrix to quaternion
    batch pytorch version ported from the corresponding numpy method above
    :param R: N * 3 * 3
    :return: N * 4
    """
    rotdiff = R - R.transpose(1, 2)
    r = torch.zeros_like(rotdiff[:, 0])
    r[:, 0] = -rotdiff[:, 1, 2]
    r[:, 1] = rotdiff[:, 0, 2]
    r[:, 2] = -rotdiff[:, 0, 1]
    r_norm = torch.norm(r, dim=1)
    sintheta = r_norm / 2
    r0 = torch.div(r, r_norm.unsqueeze(1).repeat(1, 3) + 0.00000001)
    t1 = R[:, 0, 0]
    t2 = R[:, 1, 1]
    t3 = R[:, 2, 2]
    costheta = (t1 + t2 + t3 - 1) / 2
    theta = torch.atan2(sintheta, costheta)
    q = Variable(torch.zeros(R.shape[0], 4)).float().cuda()
    q[:, 0] = torch.cos(theta / 2)
    q[:, 1:] = torch.mul(r0, torch.sin(theta / 2).unsqueeze(1).repeat(1, 3))

    return q 
开发者ID:wei-mao-2019,项目名称:LearnTrajDep,代码行数:27,代码来源:data_utils.py

示例3: expmap2rotmat_torch

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def expmap2rotmat_torch(r):
    """
    Converts expmap matrix to rotation
    batch pytorch version ported from the corresponding method above
    :param r: N*3
    :return: N*3*3
    """
    theta = torch.norm(r, 2, 1)
    r0 = torch.div(r, theta.unsqueeze(1).repeat(1, 3) + 0.0000001)
    r1 = torch.zeros_like(r0).repeat(1, 3)
    r1[:, 1] = -r0[:, 2]
    r1[:, 2] = r0[:, 1]
    r1[:, 5] = -r0[:, 0]
    r1 = r1.view(-1, 3, 3)
    r1 = r1 - r1.transpose(1, 2)
    n = r1.data.shape[0]
    R = Variable(torch.eye(3, 3).repeat(n, 1, 1)).float().cuda() + torch.mul(
        torch.sin(theta).unsqueeze(1).repeat(1, 9).view(-1, 3, 3), r1) + torch.mul(
        (1 - torch.cos(theta).unsqueeze(1).repeat(1, 9).view(-1, 3, 3)), torch.matmul(r1, r1))
    return R 
开发者ID:wei-mao-2019,项目名称:LearnTrajDep,代码行数:22,代码来源:data_utils.py

示例4: fkl_torch

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def fkl_torch(angles, parent, offset, rotInd, expmapInd):
    """
    pytorch version of fkl.

    convert joint angles to joint locations
    batch pytorch version of the fkl() method above
    :param angles: N*99
    :param parent:
    :param offset:
    :param rotInd:
    :param expmapInd:
    :return: N*joint_n*3
    """
    n = angles.data.shape[0]
    j_n = offset.shape[0]
    p3d = Variable(torch.from_numpy(offset)).float().cuda().unsqueeze(0).repeat(n, 1, 1)
    angles = angles[:, 3:].contiguous().view(-1, 3)
    R = data_utils.expmap2rotmat_torch(angles).view(n, j_n, 3, 3)
    for i in np.arange(1, j_n):
        if parent[i] > 0:
            R[:, i, :, :] = torch.matmul(R[:, i, :, :], R[:, parent[i], :, :]).clone()
            p3d[:, i, :] = torch.matmul(p3d[0, i, :], R[:, parent[i], :, :]) + p3d[:, parent[i], :]
    return p3d 
开发者ID:wei-mao-2019,项目名称:LearnTrajDep,代码行数:25,代码来源:forward_kinematics.py

示例5: __init__

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def __init__(self,
                 unique_draws,
                 canvas_shape=[64, 64],
                 rolling_average_const=0.7):
        """
        This class defines does all the work to create the final canvas from
        the prediction of RNN and also defines the loss to back-propagate in.
        :param canvas_shape: Canvas shape
        :param rolling_average_const: constant to be used in creating running average 
        baseline.
        :param stack_size: Maximum size of Stack required
        :param time_steps: max len of program
        :param unique_draws: Number of unique_draws in the dataset
        penalize longer predicted programs in variable length case training.
        """
        self.canvas_shape = canvas_shape
        self.unique_draws = unique_draws
        self.max_reward = Variable(torch.zeros(1)).cuda()
        self.rolling_baseline = Variable(torch.zeros(1)).cuda()
        self.alpha_baseline = rolling_average_const 
开发者ID:Hippogriff,项目名称:CSGNet,代码行数:22,代码来源:reinforce.py

示例6: get_label

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def get_label(self, x, detach=False):  # pylint: disable=arguments-differ
        """
        Get data sample labels, i.e. true or fake.

        Args:
            x (Union(numpy.ndarray, torch.Tensor)): Discriminator input, i.e. data sample.
            detach (bool): if None detach from torch tensor variable (optional)

        Returns:
            torch.Tensor: Discriminator output, i.e. data label
        """

        # pylint: disable=not-callable, no-member
        if isinstance(x, torch.Tensor):
            pass
        else:
            x = torch.tensor(x, dtype=torch.float32)
            x = Variable(x)

        if detach:
            return self._discriminator.forward(x).detach().numpy()
        else:
            return self._discriminator.forward(x) 
开发者ID:Qiskit,项目名称:qiskit-aqua,代码行数:25,代码来源:pytorch_discriminator.py

示例7: convert_chwTensor_to_hwcNumpy

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def convert_chwTensor_to_hwcNumpy(tensor):
    """convert a group images pytorch tensor(count * c * h * w) to numpy array images(count * h * w * c)
            Parameters:
            ----------
            tensor: numpy array , count * c * h * w

            Returns:
            -------
            numpy array images: count * h * w * c
            """

    if isinstance(tensor, Variable):
        return np.transpose(tensor.data.numpy(), (0,2,3,1))
    elif isinstance(tensor, torch.FloatTensor):
        return np.transpose(tensor.numpy(), (0,2,3,1))
    else:
        raise Exception("covert b*c*h*w tensor to b*h*w*c numpy error.This tensor must have 4 dimension.") 
开发者ID:kuaikuaikim,项目名称:DFace,代码行数:19,代码来源:image_tools.py

示例8: calculate_gradient_penalty

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def calculate_gradient_penalty(discriminator, penalty, real_data, fake_data):
    real_data = real_data.data
    fake_data = fake_data.data

    alpha = torch.rand(len(real_data), 1)
    alpha = alpha.expand(real_data.size())
    alpha = to_cuda_if_available(alpha)

    interpolates = alpha * real_data + ((1 - alpha) * fake_data)
    interpolates = Variable(interpolates, requires_grad=True)
    discriminator_interpolates = discriminator(interpolates)

    gradients = torch.autograd.grad(outputs=discriminator_interpolates,
                                    inputs=interpolates,
                                    grad_outputs=to_cuda_if_available(torch.ones_like(discriminator_interpolates)),
                                    create_graph=True, retain_graph=True, only_inputs=True)[0]

    return ((gradients.norm(2, dim=1) - 1) ** 2).mean() * penalty 
开发者ID:rcamino,项目名称:multi-categorical-gans,代码行数:20,代码来源:wgan_gp.py

示例9: pre_train_epoch

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def pre_train_epoch(autoencoder, data, batch_size, optim=None, variable_sizes=None, temperature=None):
    autoencoder.train(mode=(optim is not None))

    training = optim is not None

    losses = []
    for batch in data.batch_iterator(batch_size):
        if optim is not None:
            optim.zero_grad()

        batch = Variable(torch.from_numpy(batch))
        batch = to_cuda_if_available(batch)

        _, batch_reconstructed = autoencoder(batch, training=training, temperature=temperature, normalize_code=False)

        loss = categorical_variable_loss(batch_reconstructed, batch, variable_sizes)
        loss.backward()

        if training:
            optim.step()

        loss = to_cpu_if_available(loss)
        losses.append(loss.data.numpy())
        del loss
    return losses 
开发者ID:rcamino,项目名称:multi-categorical-gans,代码行数:27,代码来源:pre_trainer.py

示例10: sample

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def sample(generator, temperature, num_samples, num_features, batch_size=100, noise_size=128):
    generator = to_cuda_if_available(generator)

    generator.train(mode=False)

    samples = np.zeros((num_samples, num_features), dtype=np.float32)

    start = 0
    while start < num_samples:
        with torch.no_grad():
            noise = Variable(torch.FloatTensor(batch_size, noise_size).normal_())
            noise = to_cuda_if_available(noise)
            batch_samples = generator(noise, training=False, temperature=temperature)
        batch_samples = to_cpu_if_available(batch_samples)
        batch_samples = batch_samples.data.numpy()

        # do not go further than the desired number of samples
        end = min(start + batch_size, num_samples)
        # limit the samples taken from the batch based on what is missing
        samples[start:end, :] = batch_samples[:min(batch_size, end - start), :]

        # move to next batch
        start = end
    return samples 
开发者ID:rcamino,项目名称:multi-categorical-gans,代码行数:26,代码来源:sampler.py

示例11: display_status

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def display_status(epoch, num_epochs, n_batch, num_batches, d_error, g_error, d_pred_real, d_pred_fake):
    
    # var_class = torch.autograd.variable.Variable
    if isinstance(d_error, torch.autograd.Variable):
        d_error = d_error.data.cpu().numpy()
    if isinstance(g_error, torch.autograd.Variable):
        g_error = g_error.data.cpu().numpy()
    if isinstance(d_pred_real, torch.autograd.Variable):
        d_pred_real = d_pred_real.data
    if isinstance(d_pred_fake, torch.autograd.Variable):
        d_pred_fake = d_pred_fake.data
    
    
    print('Epoch: [{}/{}], Batch Num: [{}/{}]'.format(
        epoch,num_epochs, n_batch, num_batches)
         )
    print('Discriminator Loss: {:.4f}, Generator Loss: {:.4f}'.format(d_error, g_error))
    print('D(x): {:.4f}, D(G(z)): {:.4f}'.format(d_pred_real.mean(), d_pred_fake.mean()))
    writer.add_scalar('D(x)', d_pred_real.mean(), epoch)
    writer.add_scalar('D(G(z)', d_pred_fake.mean(), epoch) 
开发者ID:aspuru-guzik-group,项目名称:selfies,代码行数:22,代码来源:GAN.py

示例12: train_discriminator

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def train_discriminator(optimizer, real_data, fake_data, discriminator, criterion):
    optimizer.zero_grad()
    
    # 1.1 Train on Real Data
    prediction_real = discriminator(real_data)
    y_real = Variable(torch.ones(prediction_real.shape[0], 1))
    if torch.cuda.is_available(): 
        D_real_loss = criterion(prediction_real, y_real.cuda())
    else: 
        D_real_loss = criterion(prediction_real, y_real)

    # 1.2 Train on Fake Data
    prediction_fake = discriminator(fake_data)
    y_fake = Variable(torch.zeros(prediction_fake.shape[0], 1))
    if torch.cuda.is_available(): 
        D_fake_loss = criterion(prediction_fake, y_fake.cuda())
    else: 
        D_fake_loss = criterion(prediction_fake, y_fake)
    
    D_loss = D_real_loss + D_fake_loss
    D_loss.backward()
    optimizer.step()
    
    # Return error
    return D_real_loss + D_fake_loss, prediction_real, prediction_fake, discriminator 
开发者ID:aspuru-guzik-group,项目名称:selfies,代码行数:27,代码来源:GAN.py

示例13: train_discriminator

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def train_discriminator(optimizer, real_data, fake_data, discriminator, criterion):
    optimizer.zero_grad()
    
    # 1.1 Train on Real Data
    prediction_real = discriminator(real_data)
    y_real = Variable(torch.ones(prediction_real.shape[0], 1))
    if torch.cuda.is_available(): 
        D_real_loss = criterion(prediction_real, y_real.cuda())
    else: 
        D_real_loss = criterion(prediction_real, y_real)

    # 1.2 Train on Fake Data
    prediction_fake = discriminator(fake_data)
    y_fake = Variable(torch.zeros(prediction_fake.shape[0], 1))
    if torch.cuda.is_available(): 
        D_fake_loss = criterion(prediction_fake, y_fake.cuda())
    else: 
        D_fake_loss = criterion(prediction_fake, y_fake)
    
    D_loss = D_real_loss + D_fake_loss
    D_loss.backward()
    optimizer.step()
    
    return D_real_loss + D_fake_loss, prediction_real, prediction_fake, discriminator 
开发者ID:aspuru-guzik-group,项目名称:selfies,代码行数:26,代码来源:GAN.py

示例14: r_ggnn

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def r_ggnn(self, h):

        aux = Variable( torch.Tensor(h[0].size(0), self.args['out']).type_as(h[0].data).zero_() )
        # For each graph
        for i in range(h[0].size(0)):
            nn_res = nn.Sigmoid()(self.learn_modules[0](torch.cat([h[0][i,:,:], h[-1][i,:,:]], 1)))*self.learn_modules[1](h[-1][i,:,:])

            # Delete virtual nodes
            nn_res = (torch.sum(h[0][i,:,:],1).expand_as(nn_res)>0).type_as(nn_res)* nn_res

            aux[i,:] = torch.sum(nn_res,0)

        return aux 
开发者ID:priba,项目名称:nmp_qc,代码行数:15,代码来源:ReadoutFunction.py

示例15: r_mpnn

# 需要导入模块: from torch.autograd import variable [as 别名]
# 或者: from torch.autograd.variable import Variable [as 别名]
def r_mpnn(self, h):

        aux = Variable( torch.Tensor(h[0].size(0), self.args['out']).type_as(h[0].data).zero_() )
        # For each graph
        for i in range(h[0].size(0)):
            nn_res = nn.Sigmoid()(self.learn_modules[0](torch.cat([h[0][i,:,:], h[-1][i,:,:]], 1)))*self.learn_modules[1](h[-1][i,:,:])

            # Delete virtual nodes
            nn_res = (torch.sum(h[0][i,:,:],1).expand_as(nn_res)>0).type_as(nn_res)* nn_res

            aux[i,:] = torch.sum(nn_res,0)

        return aux 
开发者ID:priba,项目名称:nmp_qc,代码行数:15,代码来源:ReadoutFunction.py


注:本文中的torch.autograd.variable.Variable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。