本文整理汇总了Python中torch.argmax方法的典型用法代码示例。如果您正苦于以下问题:Python torch.argmax方法的具体用法?Python torch.argmax怎么用?Python torch.argmax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.argmax方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate_accuracy
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def evaluate_accuracy(data_iter, net,
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
acc_sum, n = 0.0, 0
with torch.no_grad():
for X, y in data_iter:
if isinstance(net, torch.nn.Module):
net.eval() # 评估模式,会关闭 dropout
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
net.train() # 改回训练模式
else:
# 如果是自定义的模型
if 'is_training' in net.__code__.co_varnames:
acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
示例2: train_cnn
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def train_cnn(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
net = net.to(device)
print('training on', device)
loss = nn.CrossEntropyLoss()
batch_count = 0
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' %
(epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc, time.time() - start))
示例3: predict_rnn_pytorch
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,
char_to_idx):
state = None
output = [char_to_idx[prefix[0]]] # output会记录prefix加上输出
for t in range(num_chars + len(prefix) - 1):
X = torch.tensor([output[-1]], device=device).view(1, 1)
if state is not None:
if isinstance(state, tuple): # LSTM, state:(h, c)
state = (state[0].to(device), state[1].to(device))
else:
state = state.to(device)
(Y, state) = model(X, state) # 前向计算不需要传入模型参数
if t < len(prefix) - 1:
output.append(char_to_idx[prefix[t + 1]])
else:
output.append(int(Y.argmax(dim=1).item()))
return ''.join([idx_to_char[i] for i in output])
示例4: calculate_outputs_and_gradients
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def calculate_outputs_and_gradients(inputs, model, target_label_idx, cuda=False):
# do the pre-processing
predict_idx = None
gradients = []
for input in inputs:
input = pre_processing(input, cuda)
output = model(input)
output = F.softmax(output, dim=1)
if target_label_idx is None:
target_label_idx = torch.argmax(output, 1).item()
index = np.ones((output.size()[0], 1)) * target_label_idx
index = torch.tensor(index, dtype=torch.int64)
if cuda:
index = index.cuda()
output = output.gather(1, index)
# clear grad
model.zero_grad()
output.backward()
gradient = input.grad.detach().cpu().numpy()[0]
gradients.append(gradient)
gradients = np.array(gradients)
return gradients, target_label_idx
示例5: classwise_f1
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def classwise_f1(output, gt):
"""
Args:
output: torch.Tensor of shape (n_batch, n_classes, image.shape)
gt: torch.LongTensor of shape (n_batch, image.shape)
"""
epsilon = 1e-20
n_classes = output.shape[1]
output = torch.argmax(output, dim=1)
true_positives = torch.tensor([((output == i) * (gt == i)).sum() for i in range(n_classes)]).float()
selected = torch.tensor([(output == i).sum() for i in range(n_classes)]).float()
relevant = torch.tensor([(gt == i).sum() for i in range(n_classes)]).float()
precision = (true_positives + epsilon) / (selected + epsilon)
recall = (true_positives + epsilon) / (relevant + epsilon)
classwise_f1 = 2 * (precision * recall) / (precision + recall)
return classwise_f1
示例6: batch_intersection_union
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def batch_intersection_union(output, target, nclass):
"""mIoU"""
# inputs are NDarray, output 4D, target 3D
# the category -1 is ignored class, typically for background / boundary
mini = 1
maxi = nclass
nbins = nclass
predict = torch.argmax(output, 1) + 1
target = target.float() + 1
predict = predict.float() * (target > 0).float()
intersection = predict * (predict == target).float()
# areas of intersection and union
area_inter = torch.histc(intersection, bins=nbins, min=mini, max=maxi)
area_pred = torch.histc(predict, bins=nbins, min=mini, max=maxi)
area_lab = torch.histc(target, bins=nbins, min=mini, max=maxi)
area_union = area_pred + area_lab - area_inter
assert torch.sum(area_inter > area_union).item() == 0, \
"Intersection area should be smaller than Union area"
return area_inter.float(), area_union.float()
示例7: _sample_action
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def _sample_action(self, cat_distr, mask, relaxed, tau_weights, straight_through, gumbel_noise):
if self.training:
if relaxed:
N = mask.sum(dim=-1, keepdim=True)
tau = tau_weights[0] + tau_weights[1].exp() * torch.log(N + 1) + tau_weights[2].exp() * N
actions, gumbel_noise = cat_distr.rsample(temperature=tau, gumbel_noise=gumbel_noise)
if straight_through:
actions_hard = torch.zeros_like(actions)
actions_hard.scatter_(-1, actions.argmax(dim=-1, keepdim=True), 1.0)
actions = (actions_hard - actions).detach() + actions
actions = clamp_grad(actions, -0.5, 0.5)
else:
actions, gumbel_noise = cat_distr.rsample(gumbel_noise=gumbel_noise)
else:
actions = torch.zeros_like(cat_distr.probs)
actions.scatter_(-1, torch.argmax(cat_distr.probs, dim=-1, keepdim=True), 1.0)
gumbel_noise = None
return actions, gumbel_noise
示例8: batch_intersection_union
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def batch_intersection_union(output, target, nclass):
"""mIoU"""
# inputs are numpy array, output 4D, target 3D
mini = 1
maxi = nclass
nbins = nclass
predict = torch.argmax(output, 1) + 1
target = target.float() + 1
predict = predict.float() * (target > 0).float()
intersection = predict * (predict == target).float()
# areas of intersection and union
# element 0 in intersection occur the main difference from np.bincount. set boundary to -1 is necessary.
area_inter = torch.histc(intersection.cpu(), bins=nbins, min=mini, max=maxi)
area_pred = torch.histc(predict.cpu(), bins=nbins, min=mini, max=maxi)
area_lab = torch.histc(target.cpu(), bins=nbins, min=mini, max=maxi)
area_union = area_pred + area_lab - area_inter
assert torch.sum(area_inter > area_union).item() == 0, "Intersection area should be smaller than Union area"
return area_inter.float(), area_union.float()
示例9: test_softmax
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def test_softmax(self):
em = LogisticRegression(seed=1, input_dim=2, output_dim=3, verbose=False)
Xs, _ = self.single_problem
Ys = []
for X in Xs:
class1 = X[:, 0] < X[:, 1]
class2 = X[:, 0] > X[:, 1] + 0.5
class3 = X[:, 0] > X[:, 1]
Y = torch.argmax(torch.stack([class1, class2, class3], dim=1), dim=1) + 1
Ys.append(Y)
em.train_model(
(Xs[0], Ys[0]),
valid_data=(Xs[1], Ys[1]),
lr=0.1,
n_epochs=10,
checkpoint=False,
)
score = em.score((Xs[2], Ys[2]), verbose=False)
self.assertGreater(score, 0.95)
示例10: evaluate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def evaluate(epoch, args, model, feats, labels, train, val, test):
with torch.no_grad():
batch_size = args.eval_batch_size
if batch_size <= 0:
pred = model(feats)
else:
pred = []
num_nodes = labels.shape[0]
n_batch = (num_nodes + batch_size - 1) // batch_size
for i in range(n_batch):
batch_start = i * batch_size
batch_end = min((i + 1) * batch_size, num_nodes)
batch_feats = [feat[batch_start: batch_end] for feat in feats]
pred.append(model(batch_feats))
pred = torch.cat(pred)
pred = torch.argmax(pred, dim=1)
correct = (pred == labels).float()
train_acc = correct[train].sum() / len(train)
val_acc = correct[val].sum() / len(val)
test_acc = correct[test].sum() / len(test)
return train_acc, val_acc, test_acc
示例11: evaluate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def evaluate(dataloader, model, prog_args, logger=None):
'''
evaluate function
'''
if logger is not None and prog_args.save_dir is not None:
model.load_state_dict(torch.load(prog_args.save_dir + "/" + prog_args.dataset
+ "/model.iter-" + str(logger['best_epoch'])))
model.eval()
correct_label = 0
with torch.no_grad():
for batch_idx, (batch_graph, graph_labels) in enumerate(dataloader):
if torch.cuda.is_available():
for (key, value) in batch_graph.ndata.items():
batch_graph.ndata[key] = value.cuda()
graph_labels = graph_labels.cuda()
ypred = model(batch_graph)
indi = torch.argmax(ypred, dim=1)
correct = torch.sum(indi == graph_labels)
correct_label += correct.item()
result = correct_label / (len(dataloader) * prog_args.batch_size)
return result
示例12: _graph_fn_sample_deterministic
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def _graph_fn_sample_deterministic(self, distribution):
"""
Returns the argmax (int) of a relaxed one-hot vector. See `_graph_fn_sample_stochastic` for details.
"""
if get_backend() == "tf":
# Cast to float again because this is called from a tf.cond where the other option calls a stochastic
# sample returning a float.
argmax = tf.argmax(input=distribution._distribution.probs, axis=-1, output_type=tf.int32)
sample = tf.cast(argmax, dtype=tf.float32)
# Argmax turns (?, n) into (?,), not (?, 1)
# TODO: What if we have a time rank as well?
if len(sample.shape) == 1:
sample = tf.expand_dims(sample, -1)
return sample
elif get_backend() == "pytorch":
# TODO: keepdims?
return torch.argmax(distribution.probs, dim=-1).int()
示例13: _graph_fn_get_action_components
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def _graph_fn_get_action_components(self, flat_key, logits, parameters, deterministic):
action_space_component = self.flat_action_space[flat_key]
# Skip our distribution, iff discrete action-space and deterministic acting (greedy).
# In that case, one does not need to create a distribution in the graph each act (only to get the argmax
# over the logits, which is the same as the argmax over the probabilities (or log-probabilities)).
if isinstance(action_space_component, IntBox) and \
(deterministic is True or (isinstance(deterministic, np.ndarray) and deterministic)):
return self._graph_fn_get_deterministic_action_wo_distribution(logits)
# Bernoulli: Sigmoid derived p must be larger 0.5.
elif isinstance(action_space_component, BoolBox) and \
(deterministic is True or (isinstance(deterministic, np.ndarray) and deterministic)):
# Note: Change 0.5 to 1.0, once parameters are logits, not probs anymore (so far, parameters for
# Bernoulli distributions are still probs).
if get_backend() == "tf":
return tf.greater(parameters, 0.5)
elif get_backend() == "pytorch":
return torch.gt(parameters, 0.5)
# Deterministic is tensor or False. Pass through graph.
else:
return self.distributions[flat_key].draw(parameters, deterministic)
示例14: BPDA_attack
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def BPDA_attack(image,target, model, step_size = 1., iterations = 10, linf=False, transform_func=identity_transform):
target = label2tensor(target)
adv = image.detach().numpy()
adv = torch.from_numpy(adv)
adv.requires_grad_()
for _ in range(iterations):
adv_def = transform_func(adv)
adv_def.requires_grad_()
l2 = nn.MSELoss()
loss = l2(0, adv_def)
loss.backward()
g = get_cw_grad(adv_def, image, target, model)
if linf:
g = torch.sign(g)
print(g.numpy().sum())
adv = adv.detach().numpy() - step_size * g.numpy()
adv = clip_bound(adv)
adv = torch.from_numpy(adv)
adv.requires_grad_()
if linf:
print('label', torch.argmax(model(adv)), 'linf', torch.max(torch.abs(adv - image)).detach().numpy())
else:
print('label', torch.argmax(model(adv)), 'l2', l2_norm(adv, image))
return adv.detach().numpy()
示例15: val_gzsl
# 需要导入模块: import torch [as 别名]
# 或者: from torch import argmax [as 别名]
def val_gzsl(self, test_X, test_label, target_classes):
with torch.no_grad():
start = 0
ntest = test_X.size()[0]
predicted_label = torch.LongTensor(test_label.size())
for i in range(0, ntest, self.batch_size):
end = min(ntest, start+self.batch_size)
output = self.model(test_X[start:end]) #.to(self.device)
#_, predicted_label[start:end] = torch.max(output.data, 1)
predicted_label[start:end] = torch.argmax(output.data, 1)
start = end
#print(str(predicted_label[:3]).ljust(40,'.'), end= ' ' )
acc = self.compute_per_class_acc_gzsl(test_label, predicted_label, target_classes)
return acc