本文整理汇总了Python中torch.allclose方法的典型用法代码示例。如果您正苦于以下问题:Python torch.allclose方法的具体用法?Python torch.allclose怎么用?Python torch.allclose使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.allclose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_ce_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_ce_loss():
# use_mask and use_sigmoid cannot be true at the same time
with pytest.raises(AssertionError):
loss_cfg = dict(
type='CrossEntropyLoss',
use_mask=True,
use_sigmoid=True,
loss_weight=1.0)
build_loss(loss_cfg)
# test loss with class weights
loss_cls_cfg = dict(
type='CrossEntropyLoss',
use_sigmoid=False,
class_weight=[0.8, 0.2],
loss_weight=1.0)
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[100, -100]])
fake_label = torch.Tensor([1]).long()
assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(40.))
loss_cls_cfg = dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)
loss_cls = build_loss(loss_cls_cfg)
assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(200.))
示例2: _check_point_on_manifold
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def _check_point_on_manifold(self, x, *, atol=1e-4, rtol=1e-4):
row_sum = x.sum(dim=-1)
col_sum = x.sum(dim=-2)
row_ok = torch.allclose(
row_sum, row_sum.new((1,)).fill_(1), atol=atol, rtol=rtol
)
col_ok = torch.allclose(
col_sum, col_sum.new((1,)).fill_(1), atol=atol, rtol=rtol
)
if row_ok and col_ok:
return True, None
else:
return (
False,
"illegal doubly stochastic matrix with atol={}, rtol={}".format(
atol, rtol
),
)
示例3: _check_point_on_manifold
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def _check_point_on_manifold(
self, x: torch.Tensor, *, atol=1e-5, rtol=1e-5
) -> Tuple[bool, Optional[str]]:
norm = x.norm(dim=-1)
ok = torch.allclose(norm, norm.new((1,)).fill_(1), atol=atol, rtol=rtol)
if not ok:
return False, "`norm(x) != 1` with atol={}, rtol={}".format(atol, rtol)
ok = torch.allclose(self._project_on_subspace(x), x, atol=atol, rtol=rtol)
if not ok:
return (
False,
"`x` is not in the subspace of the manifold with atol={}, rtol={}".format(
atol, rtol
),
)
return True, None
示例4: test_arbitrary_dimension
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_arbitrary_dimension(dim):
shape = [3, 4, 2, 5]
X = torch.randn(*shape, dtype=torch.float64)
alpha_shape = shape
alpha_shape[dim] = 1
alphas = 1.05 + torch.rand(alpha_shape, dtype=torch.float64)
P = entmax_bisect(X, alpha=alphas, dim=dim)
ranges = [
list(range(k)) if i != dim else [slice(None)]
for i, k in enumerate(shape)
]
for ix in product(*ranges):
x = X[ix].unsqueeze(0)
alpha = alphas[ix].item()
p_true = entmax_bisect(x, alpha=alpha, dim=-1)
assert torch.allclose(P[ix], p_true)
示例5: test_polar
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_polar():
assert Polar().__repr__() == 'Polar(norm=True, max_value=None)'
pos = torch.Tensor([[0, 0], [1, 0]])
edge_index = torch.tensor([[0, 1], [1, 0]])
edge_attr = torch.Tensor([1, 1])
data = Data(edge_index=edge_index, pos=pos)
data = Polar(norm=False)(data)
assert len(data) == 3
assert data.pos.tolist() == pos.tolist()
assert data.edge_index.tolist() == edge_index.tolist()
assert torch.allclose(
data.edge_attr, torch.Tensor([[1, 0], [1, PI]]), atol=1e-04)
data = Data(edge_index=edge_index, pos=pos, edge_attr=edge_attr)
data = Polar(norm=True)(data)
assert len(data) == 3
assert data.pos.tolist() == pos.tolist()
assert data.edge_index.tolist() == edge_index.tolist()
assert torch.allclose(
data.edge_attr, torch.Tensor([[1, 1, 0], [1, 1, 0.5]]), atol=1e-04)
示例6: test_permuted_global_pool
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_permuted_global_pool():
N_1, N_2 = 4, 6
x = torch.randn(N_1 + N_2, 4)
batch = torch.cat([torch.zeros(N_1), torch.ones(N_2)]).to(torch.long)
perm = torch.randperm(N_1 + N_2)
px = x[perm]
pbatch = batch[perm]
px1 = px[pbatch == 0]
px2 = px[pbatch == 1]
out = global_add_pool(px, pbatch)
assert out.size() == (2, 4)
assert torch.allclose(out[0], px1.sum(dim=0))
assert torch.allclose(out[1], px2.sum(dim=0))
out = global_mean_pool(px, pbatch)
assert out.size() == (2, 4)
assert torch.allclose(out[0], px1.mean(dim=0))
assert torch.allclose(out[1], px2.mean(dim=0))
out = global_max_pool(px, pbatch)
assert out.size() == (2, 4)
assert torch.allclose(out[0], px1.max(dim=0)[0])
assert torch.allclose(out[1], px2.max(dim=0)[0])
示例7: test_static_graph
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_static_graph():
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
x1, x2 = torch.randn(3, 8), torch.randn(3, 8)
data1 = Data(edge_index=edge_index, x=x1)
data2 = Data(edge_index=edge_index, x=x2)
batch = Batch.from_data_list([data1, data2])
x = torch.stack([x1, x2], dim=0)
for conv in [MyConv(), GCNConv(8, 16), ChebConv(8, 16, K=2)]:
out1 = conv(batch.x, batch.edge_index)
assert out1.size(0) == 6
conv.node_dim = 1
out2 = conv(x, edge_index)
assert out2.size()[:2] == (2, 3)
assert torch.allclose(out1, out2.view(-1, out2.size(-1)))
示例8: test_appnp
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_appnp():
x = torch.randn(4, 16)
edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
row, col = edge_index
adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4))
conv = APPNP(K=10, alpha=0.1)
assert conv.__repr__() == 'APPNP(K=10, alpha=0.1)'
out = conv(x, edge_index)
assert out.size() == (4, 16)
assert torch.allclose(conv(x, adj.t()), out, atol=1e-6)
t = '(Tensor, Tensor, OptTensor) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert jit(x, edge_index).tolist() == out.tolist()
t = '(Tensor, SparseTensor, OptTensor) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert torch.allclose(conv(x, adj.t()), out, atol=1e-6)
示例9: test_cluster_gcn_conv
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_cluster_gcn_conv():
x = torch.randn(4, 16)
edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]])
row, col = edge_index
adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4))
conv = ClusterGCNConv(16, 32, diag_lambda=1.)
assert conv.__repr__() == 'ClusterGCNConv(16, 32, diag_lambda=1.0)'
out = conv(x, edge_index)
assert out.size() == (4, 32)
assert conv(x, edge_index, size=(4, 4)).tolist() == out.tolist()
assert torch.allclose(conv(x, adj.t()), out)
t = '(Tensor, Tensor, Size) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert jit(x, edge_index).tolist() == out.tolist()
assert jit(x, edge_index, size=(4, 4)).tolist() == out.tolist()
t = '(Tensor, SparseTensor, Size) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert torch.allclose(jit(x, adj.t()), out)
示例10: test_rgcn_conv_equality
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_rgcn_conv_equality(conf):
num_bases, num_blocks = conf
x1 = torch.randn(4, 4)
edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [0, 0, 1, 0, 1, 1]])
edge_type = torch.tensor([0, 1, 1, 0, 0, 1])
edge_index = torch.tensor([
[0, 1, 1, 2, 2, 3, 0, 1, 1, 2, 2, 3],
[0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1],
])
edge_type = torch.tensor([0, 1, 1, 0, 0, 1, 2, 3, 3, 2, 2, 3])
torch.manual_seed(12345)
conv1 = RGCNConv(4, 32, 4, num_bases, num_blocks)
torch.manual_seed(12345)
conv2 = FastRGCNConv(4, 32, 4, num_bases, num_blocks)
out1 = conv1(x1, edge_index, edge_type)
out2 = conv2(x1, edge_index, edge_type)
assert torch.allclose(out1, out2, atol=1e-6)
示例11: test_agnn_conv
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_agnn_conv(requires_grad):
x = torch.randn(4, 16)
edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
row, col = edge_index
adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4))
conv = AGNNConv(requires_grad=requires_grad)
assert conv.__repr__() == 'AGNNConv()'
out = conv(x, edge_index)
assert out.size() == (4, 16)
assert torch.allclose(conv(x, adj.t()), out, atol=1e-6)
t = '(Tensor, Tensor) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert jit(x, edge_index).tolist() == out.tolist()
t = '(Tensor, SparseTensor) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert torch.allclose(conv(x, adj.t()), out, atol=1e-6)
示例12: test_arma_conv
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_arma_conv():
x = torch.randn(4, 16)
edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
row, col = edge_index
adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4))
conv = ARMAConv(16, 32, num_stacks=8, num_layers=4)
assert conv.__repr__() == 'ARMAConv(16, 32, num_stacks=8, num_layers=4)'
out = conv(x, edge_index)
assert out.size() == (4, 32)
assert conv(x, adj.t()).tolist() == out.tolist()
t = '(Tensor, Tensor, OptTensor) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert jit(x, edge_index).tolist() == out.tolist()
t = '(Tensor, SparseTensor, OptTensor) -> Tensor'
jit = torch.jit.script(conv.jittable(t))
assert torch.allclose(conv(x, adj.t()), out, atol=1e-6)
示例13: test_grad1
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def test_grad1():
torch.manual_seed(1)
model = Net()
loss_fn = nn.CrossEntropyLoss()
n = 4
data = torch.rand(n, 1, 28, 28)
targets = torch.LongTensor(n).random_(0, 10)
autograd_hacks.add_hooks(model)
output = model(data)
loss_fn(output, targets).backward(retain_graph=True)
autograd_hacks.compute_grad1(model)
autograd_hacks.disable_hooks()
# Compare values against autograd
losses = torch.stack([loss_fn(output[i:i+1], targets[i:i+1]) for i in range(len(data))])
for layer in model.modules():
if not autograd_hacks.is_supported(layer):
continue
for param in layer.parameters():
assert torch.allclose(param.grad, param.grad1.mean(dim=0))
assert torch.allclose(jacobian(losses, param), param.grad1)
示例14: _compare_momentum_values
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def _compare_momentum_values(self, optim1, optim2):
self.assertEqual(len(optim1["param_groups"]), len(optim2["param_groups"]))
for i in range(len(optim1["param_groups"])):
self.assertEqual(
len(optim1["param_groups"][i]["params"]),
len(optim2["param_groups"][i]["params"]),
)
if self._check_momentum_buffer():
for j in range(len(optim1["param_groups"][i]["params"])):
id1 = optim1["param_groups"][i]["params"][j]
id2 = optim2["param_groups"][i]["params"][j]
self.assertTrue(
torch.allclose(
optim1["state"][id1]["momentum_buffer"],
optim2["state"][id2]["momentum_buffer"],
)
)
示例15: compare_batches
# 需要导入模块: import torch [as 别名]
# 或者: from torch import allclose [as 别名]
def compare_batches(test_fixture, batch1, batch2):
"""Compare two batches. Does not do recursive comparison"""
test_fixture.assertEqual(type(batch1), type(batch2))
if isinstance(batch1, (tuple, list)):
test_fixture.assertEqual(len(batch1), len(batch2))
for n in range(len(batch1)):
value1 = batch1[n]
value2 = batch2[n]
test_fixture.assertEqual(type(value1), type(value2))
if torch.is_tensor(value1):
test_fixture.assertTrue(torch.allclose(value1, value2))
else:
test_fixture.assertEqual(value1, value2)
elif isinstance(batch1, dict):
test_fixture.assertEqual(batch1.keys(), batch2.keys())
for key, value1 in batch1.items():
value2 = batch2[key]
test_fixture.assertEqual(type(value1), type(value2))
if torch.is_tensor(value1):
test_fixture.assertTrue(torch.allclose(value1, value2))
else:
test_fixture.assertEqual(value1, value2)