本文整理汇总了Python中torch.abs方法的典型用法代码示例。如果您正苦于以下问题:Python torch.abs方法的具体用法?Python torch.abs怎么用?Python torch.abs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.abs方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_uncertainty
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def _get_uncertainty(self, mask_pred, labels):
"""Estimate uncertainty based on pred logits.
We estimate uncertainty as L1 distance between 0.0 and the logits
prediction in 'mask_pred' for the foreground class in `classes`.
Args:
mask_pred (Tensor): mask predication logits, shape (num_rois,
num_classes, mask_height, mask_width).
labels (list[Tensor]): Either predicted or ground truth label for
each predicted mask, of length num_rois.
Returns:
scores (Tensor): Uncertainty scores with the most uncertain
locations having the highest uncertainty score,
shape (num_rois, 1, mask_height, mask_width)
"""
if mask_pred.shape[1] == 1:
gt_class_logits = mask_pred.clone()
else:
inds = torch.arange(mask_pred.shape[0], device=mask_pred.device)
gt_class_logits = mask_pred[inds, labels].unsqueeze(1)
return -torch.abs(gt_class_logits)
示例2: smooth_l1_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def smooth_l1_loss(pred, target, beta=1.0):
"""Smooth L1 loss.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
beta (float, optional): The threshold in the piecewise function.
Defaults to 1.0.
Returns:
torch.Tensor: Calculated loss
"""
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta,
diff - 0.5 * beta)
return loss
示例3: plot_examples
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def plot_examples(data_loader, model, epoch, plotter, ind = [0, 10, 20]):
# switch to evaluate mode
model.eval()
for i, (g, h, e, target) in enumerate(data_loader):
if i in ind:
subfolder_path = 'batch_' + str(i) + '_t_' + str(int(target[0][0])) + '/epoch_' + str(epoch) + '/'
if not os.path.isdir(args.plotPath + subfolder_path):
os.makedirs(args.plotPath + subfolder_path)
num_nodes = torch.sum(torch.sum(torch.abs(h[0, :, :]), 1) > 0)
am = g[0, 0:num_nodes, 0:num_nodes].numpy()
pos = h[0, 0:num_nodes, :].numpy()
plotter.plot_graph(am, position=pos, fig_name=subfolder_path+str(i) + '_input.png')
# Prepare input data
if args.cuda:
g, h, e, target = g.cuda(), h.cuda(), e.cuda(), target.cuda()
g, h, e, target = Variable(g), Variable(h), Variable(e), Variable(target)
# Compute output
model(g, h, e, lambda cls, id: plotter.plot_graph(am, position=pos, cls=cls,
fig_name=subfolder_path+ id))
示例4: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def forward(self, images):
"""Extract image feature vectors."""
features = self.cnn(images)
# normalization in the image embedding space
features = l2norm(features)
# linear projection to the joint embedding space
features = self.fc(features)
# normalization in the joint embedding space
if not self.no_imgnorm:
features = l2norm(features)
# take the absolute value of the embedding (used in order embeddings)
if self.use_abs:
features = torch.abs(features)
return features
示例5: _smooth_l1_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def _smooth_l1_loss(bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights, sigma=1.0, dim=[1]):
sigma_2 = sigma ** 2
box_diff = bbox_pred - bbox_targets
in_box_diff = bbox_inside_weights * box_diff
abs_in_box_diff = torch.abs(in_box_diff)
smoothL1_sign = (abs_in_box_diff < 1. / sigma_2).detach().float()
in_loss_box = torch.pow(in_box_diff, 2) * (sigma_2 / 2.) * smoothL1_sign \
+ (abs_in_box_diff - (0.5 / sigma_2)) * (1. - smoothL1_sign)
out_loss_box = bbox_outside_weights * in_loss_box
loss_box = out_loss_box
s = loss_box.size(0)
loss_box = loss_box.view(s, -1).sum(1).mean()
# for i in sorted(dim, reverse=True):
# loss_box = loss_box.sum(i)
# loss_box = loss_box.mean()
return loss_box
示例6: mu_law_encoding
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def mu_law_encoding(
x: Tensor,
quantization_channels: int
) -> Tensor:
r"""Encode signal based on mu-law companding. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
This algorithm assumes the signal has been scaled to between -1 and 1 and
returns a signal encoded with values from 0 to quantization_channels - 1.
Args:
x (Tensor): Input tensor
quantization_channels (int): Number of channels
Returns:
Tensor: Input after mu-law encoding
"""
mu = quantization_channels - 1.0
if not x.is_floating_point():
x = x.to(torch.float)
mu = torch.tensor(mu, dtype=x.dtype)
x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64)
return x_mu
示例7: mu_law_decoding
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def mu_law_decoding(
x_mu: Tensor,
quantization_channels: int
) -> Tensor:
r"""Decode mu-law encoded signal. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
This expects an input with values between 0 and quantization_channels - 1
and returns a signal scaled between -1 and 1.
Args:
x_mu (Tensor): Input tensor
quantization_channels (int): Number of channels
Returns:
Tensor: Input after mu-law decoding
"""
mu = quantization_channels - 1.0
if not x_mu.is_floating_point():
x_mu = x_mu.to(torch.float)
mu = torch.tensor(mu, dtype=x_mu.dtype)
x = ((x_mu) / mu) * 2 - 1.0
x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
return x
示例8: test_mu_law_companding
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def test_mu_law_companding(self):
quantization_channels = 256
waveform = self.waveform.clone()
if not waveform.is_floating_point():
waveform = waveform.to(torch.get_default_dtype())
waveform /= torch.abs(waveform).max()
self.assertTrue(waveform.min() >= -1. and waveform.max() <= 1.)
waveform_mu = transforms.MuLawEncoding(quantization_channels)(waveform)
self.assertTrue(waveform_mu.min() >= 0. and waveform_mu.max() <= quantization_channels)
waveform_exp = transforms.MuLawDecoding(quantization_channels)(waveform_mu)
self.assertTrue(waveform_exp.min() >= -1. and waveform_exp.max() <= 1.)
示例9: huber_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def huber_loss(error, delta=1.0):
"""
Args:
error: Torch tensor (d1,d2,...,dk)
Returns:
loss: Torch tensor (d1,d2,...,dk)
x = error = pred - gt or dist(pred,gt)
0.5 * |x|^2 if |x|<=d
0.5 * d^2 + d * (|x|-d) if |x|>d
Ref: https://github.com/charlesq34/frustum-pointnets/blob/master/models/model_util.py
"""
abs_error = torch.abs(error)
#quadratic = torch.min(abs_error, torch.FloatTensor([delta]))
quadratic = torch.clamp(abs_error, max=delta)
linear = (abs_error - quadratic)
loss = 0.5 * quadratic**2 + delta * linear
return loss
示例10: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def __init__(self,in_channel):
super(InvConv,self).__init__()
weight=np.random.randn(in_channel,in_channel)
q,_=linalg.qr(weight)
w_p,w_l,w_u=linalg.lu(q.astype(np.float32))
w_s=np.diag(w_u)
w_u=np.triu(w_u,1)
u_mask=np.triu(np.ones_like(w_u),1)
l_mask=u_mask.T
self.register_buffer('w_p',torch.from_numpy(w_p))
self.register_buffer('u_mask',torch.from_numpy(u_mask))
self.register_buffer('l_mask',torch.from_numpy(l_mask))
self.register_buffer('l_eye',torch.eye(l_mask.shape[0]))
self.register_buffer('s_sign',torch.sign(torch.from_numpy(w_s)))
self.w_l=torch.nn.Parameter(torch.from_numpy(w_l))
self.w_s=torch.nn.Parameter(torch.log(1e-7+torch.abs(torch.from_numpy(w_s))))
self.w_u=torch.nn.Parameter(torch.from_numpy(w_u))
self.weight=None
self.invweight=None
return
示例11: tforward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def tforward(self, disp, edge=None):
self.sobel=self.sobel.to(disp.device)
if edge is not None:
grad = self.sobel(disp)
grad = torch.sqrt(grad[:,0:1,...]**2 + grad[:,1:2,...]**2 + 1e-8)
pdf = (1-edge)/self.b0 * torch.exp(-torch.abs(grad)/self.b0) + \
edge/self.b1 * torch.exp(-torch.abs(grad)/self.b1)
val = torch.mean(-torch.log(pdf.clamp(min=1e-4)))
else:
# on qifeng's data we don't have ambient info
# therefore we supress edge everywhere
grad = self.sobel(disp)
grad = torch.sqrt(grad[:,0:1,...]**2 + grad[:,1:2,...]**2 + 1e-8)
grad= torch.clamp(grad, 0, 1.0)
val = torch.mean(grad)
return val
示例12: fwd
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def fwd(self, depth0, depth1, R0, t0, R1, t1):
uv1, d1 = super().tforward(depth0, R0, t0, R1, t1)
uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
depth10 = torch.nn.functional.grid_sample(depth1, uv1, padding_mode='border')
diff = torch.abs(d1.view(-1) - depth10.view(-1))
if self.clamp > 0:
diff = torch.clamp(diff, 0, self.clamp)
# return diff without clamping for debugging
return diff.mean()
示例13: smooth_l1_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def smooth_l1_loss(input, target, beta=1. / 9, size_average=True):
"""
very similar to the smooth_l1_loss from pytorch, but with
the extra beta parameter
Modified according to detectron2's fvcore,
refer to https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/smooth_l1_loss.py
"""
if beta < 1e-5:
# if beta == 0, then torch.where will result in nan gradients when
# the chain rule is applied due to pytorch implementation details
# (the False branch "0.5 * n ** 2 / 0" has an incoming gradient of
# zeros, rather than "no gradient"). To avoid this issue, we define
# small values of beta to be exactly l1 loss.
loss = torch.abs(input - target)
else:
n = torch.abs(input - target)
cond = n < beta
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if size_average:
return loss.mean()
return loss.sum()
示例14: smooth_l1_loss_LW
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def smooth_l1_loss_LW(bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights, beta=1.0):
"""
SmoothL1(x) = 0.5 * x^2 / beta if |x| < beta
|x| - 0.5 * beta otherwise.
1 / N * sum_i alpha_out[i] * SmoothL1(alpha_in[i] * (y_hat[i] - y[i])).
N is the number of batch elements in the input predictions
"""
box_diff = bbox_pred - bbox_targets
in_box_diff = bbox_inside_weights * box_diff
abs_in_box_diff = torch.abs(in_box_diff)
smoothL1_sign = (abs_in_box_diff < beta).detach().float()
in_loss_box = smoothL1_sign * 0.5 * torch.pow(in_box_diff, 2) / beta + \
(1 - smoothL1_sign) * (abs_in_box_diff - (0.5 * beta))
out_loss_box = bbox_outside_weights * in_loss_box
loss_box = out_loss_box
N = loss_box.size(0) # batch size
loss_box = loss_box.view(-1).sum(0) / N
return loss_box
示例15: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import abs [as 别名]
def forward(self, inputs, target, size_average=True):
n = torch.abs(inputs -target)
with torch.no_grad():
if torch.isnan(n.var(dim=0)).sum().item() == 0:
self.running_mean = self.running_mean.to(n.device)
self.running_mean *= (1 - self.momentum)
self.running_mean += (self.momentum * n.mean(dim=0))
self.running_var = self.running_var.to(n.device)
self.running_var *= (1 - self.momentum)
self.running_var += (self.momentum * n.var(dim=0))
beta = (self.running_mean - self.running_var)
beta = beta.clamp(max=self.beta, min=1e-3)
beta = beta.view(-1, self.num_features).to(n.device)
cond = n < beta.expand_as(n)
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if size_average:
return loss.mean()
return loss.sum()