本文整理汇总了Python中torch.Variable方法的典型用法代码示例。如果您正苦于以下问题:Python torch.Variable方法的具体用法?Python torch.Variable怎么用?Python torch.Variable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.Variable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_dropout_mask
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def get_dropout_mask(dropout_probability: float, tensor_for_masking: torch.autograd.Variable):
"""
Computes and returns an element-wise dropout mask for a given tensor, where
each element in the mask is dropped out with probability dropout_probability.
Note that the mask is NOT applied to the tensor - the tensor is passed to retain
the correct CUDA tensor type for the mask.
Parameters
----------
dropout_probability : float, required.
Probability of dropping a dimension of the input.
tensor_for_masking : torch.Variable, required.
Returns
-------
A torch.FloatTensor consisting of the binary mask scaled by 1/ (1 - dropout_probability).
This scaling ensures expected values and variances of the output of applying this mask
and the original tensor are the same.
"""
binary_mask = tensor_for_masking.clone()
binary_mask.data.copy_(torch.rand(tensor_for_masking.size()) > dropout_probability)
# Scale mask by 1/keep_prob to preserve output statistics.
dropout_mask = binary_mask.float().div(1.0 - dropout_probability)
return dropout_mask
示例2: train
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def train(net, criterion, optimizer, train_iter):
for p in crnn.parameters():
p.requires_grad = True
crnn.train()
data = train_iter.next()
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
optimizer.zero_grad()
preds = crnn(image)
preds_size = Variable(torch.LongTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
# crnn.zero_grad()
cost.backward()
optimizer.step()
return cost
示例3: get_dropout_mask
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def get_dropout_mask(dropout_probability: float, h_dim: int):
"""
Computes and returns an element-wise dropout mask for a given tensor, where
each element in the mask is dropped out with probability dropout_probability.
Note that the mask is NOT applied to the tensor - the tensor is passed to retain
the correct CUDA tensor type for the mask.
Parameters
----------
dropout_probability : float, required.
Probability of dropping a dimension of the input.
tensor_for_masking : torch.Variable, required.
Returns
-------
A torch.FloatTensor consisting of the binary mask scaled by 1/ (1 - dropout_probability).
This scaling ensures expected values and variances of the output of applying this mask
and the original tensor are the same.
"""
binary_mask = Variable(torch.FloatTensor(h_dim).cuda().fill_(0.0))
binary_mask.data.copy_(torch.rand(h_dim) > dropout_probability)
# Scale mask by 1/keep_prob to preserve output statistics.
dropout_mask = binary_mask.float().div(1.0 - dropout_probability)
return dropout_mask
示例4: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def forward(self, forest, features, num_obj):
# calc dropout mask, same for all
if self.dropout > 0.0:
dropout_mask = get_dropout_mask(self.dropout, self.out_dim)
else:
dropout_mask = None
# tree lstm input
out_h = None
h_order = Variable(torch.LongTensor(num_obj).zero_().cuda()) # used to resume order
order_idx = 0
lstm_io = tree_utils.TreeLSTM_IO(out_h, h_order, order_idx, None, None, dropout_mask)
# run tree lstm forward (leaves to root)
for idx in range(len(forest)):
self.treeLSTM(forest[idx], features, lstm_io)
# resume order to the same as input
output = torch.index_select(lstm_io.hidden, 0, lstm_io.order.long())
return output
示例5: calc_gradient_penalty
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def calc_gradient_penalty(netD, real_data, fake_data, device='cpu', pac=10, lambda_=10):
alpha = torch.rand(real_data.size(0) // pac, 1, 1, device=device)
alpha = alpha.repeat(1, pac, real_data.size(1))
alpha = alpha.view(-1, real_data.size(1))
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
# interpolates = torch.Variable(interpolates, requires_grad=True, device=device)
disc_interpolates = netD(interpolates)
gradients = torch.autograd.grad(
outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size(), device=device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = (
(gradients.view(-1, pac * real_data.size(1)).norm(2, dim=1) - 1) ** 2).mean() * lambda_
return gradient_penalty
示例6: get_activation_wts
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def get_activation_wts(attention_model,x):
"""
Get r attention heads
Args:
attention_model : {object} model
x : {torch.Variable} input whose weights we want
Returns:
r different attention weights
"""
attention_model.batch_size = x.size(0)
attention_model.hidden_state = attention_model.init_hidden()
_,wts = attention_model(x)
return wts
示例7: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def forward(self, x):
"""
Takes a batch of signals and convoles each signal with all elements in the filter
bank. After convoling the entire filter bank, the method returns a tensor of
shape [N,N_scales,1/2,T] where the 1/2 number of channels depends on whether
the filter bank is composed of real or complex filters. If the filters are
complex the 2 channels represent [real, imag] parts.
:param x: torch.Variable, batch of input signals of shape [N,1,T]
:return: torch.Variable, batch of outputs of size [N,N_scales,1/2,T]
"""
if not self._filters:
raise ValueError('PyTorch filters not initialized. Please call set_filters() first.')
return None
results = [None]*len(self._filters)
for ind, conv in enumerate(self._filters):
results[ind] = conv(x)
results = torch.stack(results) # [n_scales,n_batch,2,t]
results = results.permute(1,0,2,3) # [n_batch,n_scales,2,t]
return results
示例8: add
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def add(self, v):
if isinstance(v, Variable):
count = v.data.numel()
v = v.data.sum()
elif isinstance(v, torch.Tensor):
count = v.numel()
v = v.sum()
self.n_count += count
self.sum += v
示例9: asImg
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def asImg(tensor, size = None):
"""
This function provides fast approach to transfer the image into numpy.ndarray
This function only accept the output from sigmoid layer or hyperbolic tangent output
Arg: tensor - The torch.Variable object, the rank format is BCHW or BHW
size - The tuple object, and the format is (height, width)
Ret: The numpy image, the rank format is BHWC
"""
global channel_op
result = tensor.detach()
# 1. Judge the rank first
if len(tensor.size()) == 3:
result = torch.stack([result, result, result], 1)
# 2. Judge the range of tensor (sigmoid output or hyperbolic tangent output)
min_v = torch.min(result).cpu().data.numpy()
max_v = torch.max(result).cpu().data.numpy()
if max_v > 1.0 or min_v < -1.0:
raise Exception('tensor value out of range...\t range is [' + str(min_v) + ' ~ ' + str(max_v))
if min_v < 0:
result = (result + 1) / 2
# 3. Define the BCHW -> BHWC operation
if channel_op is None:
channel_op = Transpose(BCHW2BHWC)
# 3. Rest
result = channel_op(result)
result = result.cpu().data.numpy()
if size is not None:
result_list = []
for img in result:
result_list.append(transform.resize(img, (size[0], size[1]), mode = 'constant', order = 0) * 255)
result = np.stack(result_list, axis = 0)
else:
result *= 255.
result = result.astype(np.uint8)
return result
示例10: predictor_loss_function
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def predictor_loss_function(self, prediction, target, *args, **kwargs):
"""Pure abstract method that computes the loss.
Args:
prediction: Prediction that was made by the model of shape
[BATCH_SIZE, N_LABELS]
target: Expected result of shape [BATCH_SIZE, N_OUTPUT_TOKENS]
Returns:
loss: This method should return the loss as a Tensor or Variable.
"""
return torch.Tensor(float("Inf"))
示例11: analyse
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def analyse(net, inputs):
"""
analyse the network given input
:param net: torch.nn.Module
:param inputs: torch.Variable, torch.Tensor or list of them
:return: blob_dict, tracked_layers
"""
del tracked_layers[:]
del blob_dict[:]
if inputs is not list:
raw_inputs=[inputs]
_inputs=[]
for name,layer in net.named_modules():
layer_name_dict[layer]=name
for i in raw_inputs:
if isinstance(i,Variable):
_inputs.append(i)
elif isinstance(i,torch.Tensor):
_inputs.append(Variable(i))
elif isinstance(i,np.ndarray):
_inputs.append(Variable(torch.Tensor(i)))
else:
raise NotImplementedError("Not Support the input type {}".format(type(i)))
net.apply(register)
net.forward(*_inputs)
return blob_dict,tracked_layers
示例12: tovar
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def tovar(x, cuda):
if cuda:
return Variable(torch.FloatTensor(x).cuda())
else:
return Variable(torch.FloatTensor(x.astype(np.float64)))
示例13: analyse
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def analyse(net, inputs):
"""
analyse the network given input
:param net: torch.nn.Module
:param inputs: torch.Variable, torch.Tensor or list of them
:return: blob_dict, tracked_layers
"""
del tracked_layers[:]
del blob_dict[:]
if not isinstance(inputs,(list,tuple)):
raw_inputs=[inputs]
else:
raw_inputs=inputs
_inputs=[]
for name,layer in net.named_modules():
layer_name_dict[layer]=name
for i in raw_inputs:
if isinstance(i,Variable):
_inputs.append(i)
elif isinstance(i,torch.Tensor):
_inputs.append(Variable(i))
elif isinstance(i,np.ndarray):
_inputs.append(Variable(torch.Tensor(i)))
else:
raise NotImplementedError("Not Support the input type {}".format(type(i)))
net.apply(register)
net.forward(*_inputs)
for _,m in net.named_modules():
m._forward_hooks.clear()
print_by_layers(tracked_layers)
return blob_dict,tracked_layers
示例14: __define_variable
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def __define_variable(self, tensor, volatile=False):
if volatile:
with torch.no_grad():
return Variable(tensor)
return Variable(tensor)
示例15: evaluate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Variable [as 别名]
def evaluate(attention_model,x_test,y_test):
"""
cv results
Args:
attention_model : {object} model
x_test : {nplist} x_test
y_test : {nplist} y_test
Returns:
cv-accuracy
"""
attention_model.batch_size = x_test.shape[0]
attention_model.hidden_state = attention_model.init_hidden()
x_test_var = Variable(torch.from_numpy(x_test).type(torch.LongTensor))
y_test_pred,_ = attention_model(x_test_var)
if bool(attention_model.type):
y_preds = torch.max(y_test_pred,1)[1]
y_test_var = Variable(torch.from_numpy(y_test).type(torch.LongTensor))
else:
y_preds = torch.round(y_test_pred.type(torch.DoubleTensor).squeeze(1))
y_test_var = Variable(torch.from_numpy(y_test).type(torch.DoubleTensor))
return torch.eq(y_preds,y_test_var).data.sum()/x_test_var.size(0)