本文整理汇总了Python中torch.Tensor方法的典型用法代码示例。如果您正苦于以下问题:Python torch.Tensor方法的具体用法?Python torch.Tensor怎么用?Python torch.Tensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.Tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def update(self, gt, pred):
"""
gt, pred are tensors of size (..., 1, H, W) in the range [0, 1].
"""
C, H, W = gt.size()[-3:]
if isinstance(gt, torch.Tensor):
gt = Variable(gt)
if isinstance(pred, torch.Tensor):
pred = Variable(pred)
mse_score = self.mse_loss(pred, gt)
eps = 1e-4
pred.data[pred.data < eps] = eps
pred.data[pred.data > 1 - eps] = 1 -eps
bce_score = self.bce_loss(pred, gt)
bce_score = bce_score.item() * C * H * W
mse_score = mse_score.item() * C * H * W
self.bce_results.append(bce_score)
self.mse_results.append(mse_score)
示例2: pose_inv_full
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def pose_inv_full(pose):
'''
param pose: N x 6
Inverse the 2x3 transformer matrix.
'''
N, _ = pose.size()
b = pose.view(N, 2, 3)[:, :, 2:]
# A^{-1}
# Calculate determinant
determinant = (pose[:, 0] * pose[:, 4] - pose[:, 1] * pose[:, 3] + 1e-8).view(N, 1)
indices = Variable(torch.LongTensor([4, 1, 3, 0]).cuda())
scale = Variable(torch.Tensor([1, -1, -1, 1]).cuda())
A_inv = torch.index_select(pose, 1, indices) * scale / determinant
A_inv = A_inv.view(N, 2, 2)
# b' = - A^{-1} b
b_inv = - A_inv.matmul(b).view(N, 2, 1)
transformer_inv = torch.cat([A_inv, b_inv], dim=2)
return transformer_inv
示例3: centers_to_bboxes
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def centers_to_bboxes(self, point_list):
"""Get bboxes according to center points.
Only used in :class:`MaxIoUAssigner`.
"""
bbox_list = []
for i_img, point in enumerate(point_list):
bbox = []
for i_lvl in range(len(self.point_strides)):
scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5
bbox_shift = torch.Tensor([-scale, -scale, scale,
scale]).view(1, 4).type_as(point[0])
bbox_center = torch.cat(
[point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1)
bbox.append(bbox_center + bbox_shift)
bbox_list.append(bbox)
return bbox_list
示例4: roi_rescale
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def roi_rescale(self, rois, scale_factor):
"""Scale RoI coordinates by scale factor.
Args:
rois (torch.Tensor): RoI (Region of Interest), shape (n, 5)
scale_factor (float): Scale factor that RoI will be multiplied by.
Returns:
torch.Tensor: Scaled RoI.
"""
cx = (rois[:, 1] + rois[:, 3]) * 0.5
cy = (rois[:, 2] + rois[:, 4]) * 0.5
w = rois[:, 3] - rois[:, 1]
h = rois[:, 4] - rois[:, 2]
new_w = w * scale_factor
new_h = h * scale_factor
x1 = cx - new_w * 0.5
x2 = cx + new_w * 0.5
y1 = cy - new_h * 0.5
y2 = cy + new_h * 0.5
new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1)
return new_rois
示例5: smooth_l1_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def smooth_l1_loss(pred, target, beta=1.0):
"""Smooth L1 loss.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
beta (float, optional): The threshold in the piecewise function.
Defaults to 1.0.
Returns:
torch.Tensor: Calculated loss
"""
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta,
diff - 0.5 * beta)
return loss
示例6: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):
"""Forward function.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None.
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * l1_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox
示例7: iou_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def iou_loss(pred, target, eps=1e-6):
"""IoU loss.
Computing the IoU loss between a set of predicted bboxes and target bboxes.
The loss is calculated as negative log of IoU.
Args:
pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (torch.Tensor): Corresponding gt bboxes, shape (n, 4).
eps (float): Eps to avoid log(0).
Return:
torch.Tensor: Loss tensor.
"""
ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
loss = -ious.log()
return loss
示例8: rel_roi_point_to_rel_img_point
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def rel_roi_point_to_rel_img_point(rois,
rel_roi_points,
img_shape,
spatial_scale=1.):
"""Convert roi based relative point coordinates to image based absolute
point coordinates.
Args:
rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5)
rel_roi_points (Tensor): Point coordinates inside RoI, relative to
RoI, location, range (0, 1), shape (N, P, 2)
img_shape (tuple): (height, width) of image or feature map.
spatial_scale (float): Scale points by this factor. Default: 1.
Returns:
Tensor: Image based relative point coordinates for sampling,
shape (N, P, 2)
"""
abs_img_point = rel_roi_point_to_abs_img_point(rois, rel_roi_points)
rel_img_point = abs_img_point_to_rel_img_point(abs_img_point, img_shape,
spatial_scale)
return rel_img_point
示例9: point_sample
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def point_sample(input, points, align_corners=False, **kwargs):
"""A wrapper around :function:`grid_sample` to support 3D point_coords
tensors Unlike :function:`torch.nn.functional.grid_sample` it assumes
point_coords to lie inside [0, 1] x [0, 1] square.
Args:
input (Tensor): Feature map, shape (N, C, H, W).
points (Tensor): Image based absolute point coordinates (normalized),
range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2).
align_corners (bool): Whether align_corners. Default: False
Returns:
Tensor: Features of `point` on `input`, shape (N, C, P) or
(N, C, Hgrid, Wgrid).
"""
add_dim = False
if points.dim() == 3:
add_dim = True
points = points.unsqueeze(2)
output = F.grid_sample(
input, denormalize(points), align_corners=align_corners, **kwargs)
if add_dim:
output = output.squeeze(3)
return output
示例10: to_tensor
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
Args:
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
be converted.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not mmcv.is_str(data):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(f'type {type(data)} cannot be converted to tensor.')
示例11: __call__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def __call__(self, results):
"""Call function to convert image in results to :obj:`torch.Tensor` and
transpose the channel order.
Args:
results (dict): Result dict contains the image data to convert.
Returns:
dict: The result dict contains the image converted
to :obj:`torch.Tensor` and transposed to (C, H, W) order.
"""
for key in self.keys:
img = results[key]
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
results[key] = to_tensor(img.transpose(2, 0, 1))
return results
示例12: scale_boxes
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def scale_boxes(bboxes, scale):
"""Expand an array of boxes by a given scale.
Args:
bboxes (Tensor): Shape (m, 4)
scale (float): The scale factor of bboxes
Returns:
(Tensor): Shape (m, 4). Scaled bboxes
"""
assert bboxes.size(1) == 4
w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
w_half *= scale
h_half *= scale
boxes_scaled = torch.zeros_like(bboxes)
boxes_scaled[:, 0] = x_c - w_half
boxes_scaled[:, 2] = x_c + w_half
boxes_scaled[:, 1] = y_c - h_half
boxes_scaled[:, 3] = y_c + h_half
return boxes_scaled
示例13: is_located_in
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def is_located_in(points, bboxes):
"""Are points located in bboxes.
Args:
points (Tensor): Points, shape: (m, 2).
bboxes (Tensor): Bounding boxes, shape: (n, 4).
Return:
Tensor: Flags indicating if points are located in bboxes, shape: (m, n).
"""
assert points.size(1) == 2
assert bboxes.size(1) == 4
return (points[:, 0].unsqueeze(1) > bboxes[:, 0].unsqueeze(0)) & \
(points[:, 0].unsqueeze(1) < bboxes[:, 2].unsqueeze(0)) & \
(points[:, 1].unsqueeze(1) > bboxes[:, 1].unsqueeze(0)) & \
(points[:, 1].unsqueeze(1) < bboxes[:, 3].unsqueeze(0))
示例14: bbox_flip
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def bbox_flip(bboxes, img_shape, direction='horizontal'):
"""Flip bboxes horizontally or vertically.
Args:
bboxes (Tensor): Shape (..., 4*k)
img_shape (tuple): Image shape.
direction (str): Flip direction, options are "horizontal" and
"vertical". Default: "horizontal"
Returns:
Tensor: Flipped bboxes.
"""
assert bboxes.shape[-1] % 4 == 0
assert direction in ['horizontal', 'vertical']
flipped = bboxes.clone()
if direction == 'vertical':
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
else:
flipped[:, 0::4] = img_shape[1] - bboxes[:, 2::4]
flipped[:, 2::4] = img_shape[1] - bboxes[:, 0::4]
return flipped
示例15: bbox2roi
# 需要导入模块: import torch [as 别名]
# 或者: from torch import Tensor [as 别名]
def bbox2roi(bbox_list):
"""Convert a list of bboxes to roi format.
Args:
bbox_list (list[Tensor]): a list of bboxes corresponding to a batch
of images.
Returns:
Tensor: shape (n, 5), [batch_ind, x1, y1, x2, y2]
"""
rois_list = []
for img_id, bboxes in enumerate(bbox_list):
if bboxes.size(0) > 0:
img_inds = bboxes.new_full((bboxes.size(0), 1), img_id)
rois = torch.cat([img_inds, bboxes[:, :4]], dim=-1)
else:
rois = bboxes.new_zeros((0, 5))
rois_list.append(rois)
rois = torch.cat(rois_list, 0)
return rois