本文整理汇总了Python中time.year方法的典型用法代码示例。如果您正苦于以下问题:Python time.year方法的具体用法?Python time.year怎么用?Python time.year使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类time
的用法示例。
在下文中一共展示了time.year方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: saveImage
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def saveImage():
keepDiskSpaceFree(config.diskSpaceToReserve)
time = datetime.datetime.now()
filenameFull = config.filepath + config.filenamePrefix + "-%04d%02d%02d%02d%02d%02d" % (time.year, time.month, time.day, time.hour, time.minute, time.second)+ "." + config.fileType
# save onto webserver
filename = "/var/www/temp.jpg"
subprocess.call("sudo raspistill -w "+ str(config.saveWidth) +" -h "+ str(config.saveHeight) + " -t 1 -n -vf -e " + config.fileType + " -q 15 -o %s" % filename, shell=True)
print "Captured image: %s" % filename
theSpeech = recognizeFace(filename,filenameFull)
if len(theSpeech)>2:
print theSpeech
saySomething(theSpeech,"en")
config.lookForFaces = 0
# Keep free space above given level
示例2: timestamp_to_float
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def timestamp_to_float(time):
"""Convert a pandas timestamp to a floating point date.
>>> import datetime
>>> time = datetime.date(2010, 10, 1)
>>> timestamp_to_float(time)
2010.75
>>> time = datetime.date(2011, 4, 1)
>>> timestamp_to_float(time)
2011.25
>>> timestamp_to_float(datetime.date(2011, 1, 1))
2011.0
>>> timestamp_to_float(datetime.date(2011, 12, 1)) == (2011.0 + 11.0 / 12)
True
"""
return time.year + ((time.month - 1) / 12.0)
示例3: julian_day_dt
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def julian_day_dt(year, month, day, hour, minute, second, microsecond):
"""This is the original way to calculate the julian day from the NREL paper.
However, it is much faster to convert to unix/epoch time and then convert
to julian day. Note that the date must be UTC."""
# Not used anywhere!
if month <= 2:
year = year-1
month = month+12
a = int(year/100)
b = 2 - a + int(a * 0.25)
frac_of_day = (microsecond + (second + minute * 60 + hour * 3600)
) * 1.0 / (3600*24)
d = day + frac_of_day
jd = (int(365.25 * (year + 4716)) + int(30.6001 * (month + 1)) + d +
b - 1524.5)
return jd
示例4: get_date
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def get_date():
'''
This creates a string of the day, hour, minute and second
I use this to make folder names unique
For the files themselves, I generate genuinely unique names (i.e. name001.csv, name002.csv, etc.)
'''
time = datetime.datetime.now()
time_str = "{}y{}m{}d{}h{}m{}s".format(time.year,time.month,time.day,time.hour,time.minute,time.second)
return(time_str)
开发者ID:a-n-rose,项目名称:Build-CNN-or-LSTM-or-CNNLSTM-with-speech-features,代码行数:12,代码来源:extract_features.py
示例5: float_to_datestring
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def float_to_datestring(time):
"""Convert a floating point date to a date string
>>> float_to_datestring(2010.75)
'2010-10-01'
>>> float_to_datestring(2011.25)
'2011-04-01'
>>> float_to_datestring(2011.0)
'2011-01-01'
>>> float_to_datestring(2011.0 + 11.0 / 12)
'2011-12-01'
In some cases, the given float value can be truncated leading to unexpected
conversion between floating point and integer values. This function should
account for these errors by rounding months to the nearest integer.
>>> float_to_datestring(2011.9166666666665)
'2011-12-01'
>>> float_to_datestring(2016.9609856262834)
'2016-12-01'
"""
year = int(time)
# After accounting for the current year, extract the remainder and convert
# it to a month using the inverse of the logic used to create the floating
# point date. If the float date is sufficiently close to the end of the
# year, rounding can produce a 13th month.
month = min(int(np.rint(((time - year) * 12) + 1)), 12)
# Floating point dates do not encode day information, so we always assume
# they refer to the start of a given month.
day = 1
return "%s-%02d-%02d" % (year, month, day)
示例6: __init__
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def __init__(self, sigma_narrow=1 / 12.0, sigma_wide=3 / 12.0, proportion_wide=0.2,
pivot_frequency=1, start_date=None, end_date=None, weights=None, weights_attribute=None,
node_filters=None, max_date=None, include_internal_nodes=False, censored=False):
"""Define parameters for KDE-based frequency estimation.
Args:
sigma_narrow (float): Bandwidth for first of two Gaussians composing the KDEs
sigma_wide (float): Bandwidth for second of two Gaussians composing the KDEs
proportion_wide (float): Proportion of the second Gaussian to include in each KDE
pivot_frequency (int): Number of months between pivots
start_date (float): start of the pivots interval
end_date (float): end of the pivots interval
weights (dict): Numerical weights indexed by attribute values and applied to individual tips
weights_attribute (str): Attribute annotated on tips of a tree to use for weighting
node_filters (dict): Mapping of node attribute names (keys) to a list of valid values to keep
max_date (float): Maximum year beyond which tips are excluded from frequency estimation and are assigned
frequencies of zero
include_internal_nodes (bool): Whether internal (non-tip) nodes should have their frequencies estimated
censored (bool): Whether future observations should be censored at each pivot
Returns:
KdeFrequencies
"""
self.sigma_narrow = sigma_narrow
self.sigma_wide = sigma_wide
self.proportion_wide = proportion_wide
self.pivot_frequency = pivot_frequency
self.start_date = start_date
self.end_date = end_date
self.weights = weights
self.weights_attribute = weights_attribute
self.node_filters = node_filters
self.max_date = max_date
self.include_internal_nodes = include_internal_nodes
self.censored = censored
示例7: update_redis
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def update_redis():
get_black_name(1)
get_black_tel(1)
get_black_email(1)
get_malicious_domain_whois(1)
get_malicious_sponsoring_registrar()
get_malicious_tld()
get_ip_frequency()
get_exist_situation()
get_update_situation()
for year in range(2007, 2018):
get_c_e_data(year)
示例8: test_date_to_floatyear
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def test_date_to_floatyear(self):
r = utils.date_to_floatyear(0, 1)
self.assertEqual(r, 0)
r = utils.date_to_floatyear(1, 1)
self.assertEqual(r, 1)
r = utils.date_to_floatyear([0, 1], [1, 1])
np.testing.assert_array_equal(r, [0, 1])
yr = utils.date_to_floatyear([1998, 1998], [6, 7])
y, m = utils.floatyear_to_date(yr)
np.testing.assert_array_equal(y, [1998, 1998])
np.testing.assert_array_equal(m, [6, 7])
yr = utils.date_to_floatyear([1998, 1998], [2, 3])
y, m = utils.floatyear_to_date(yr)
np.testing.assert_array_equal(y, [1998, 1998])
np.testing.assert_array_equal(m, [2, 3])
time = pd.date_range('1/1/1800', periods=300*12-11, freq='MS')
yr = utils.date_to_floatyear(time.year, time.month)
y, m = utils.floatyear_to_date(yr)
np.testing.assert_array_equal(y, time.year)
np.testing.assert_array_equal(m, time.month)
myr = utils.monthly_timeseries(1800, 2099)
y, m = utils.floatyear_to_date(myr)
np.testing.assert_array_equal(y, time.year)
np.testing.assert_array_equal(m, time.month)
myr = utils.monthly_timeseries(1800, ny=300)
y, m = utils.floatyear_to_date(myr)
np.testing.assert_array_equal(y, time.year)
np.testing.assert_array_equal(m, time.month)
time = pd.period_range('0001-01', '6000-1', freq='M')
myr = utils.monthly_timeseries(1, 6000)
y, m = utils.floatyear_to_date(myr)
np.testing.assert_array_equal(y, time.year)
np.testing.assert_array_equal(m, time.month)
time = pd.period_range('0001-01', '6000-12', freq='M')
myr = utils.monthly_timeseries(1, 6000, include_last_year=True)
y, m = utils.floatyear_to_date(myr)
np.testing.assert_array_equal(y, time.year)
np.testing.assert_array_equal(m, time.month)
with self.assertRaises(ValueError):
utils.monthly_timeseries(1)
示例9: test_hydro_convertion
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def test_hydro_convertion(self):
# October
y, m = utils.hydrodate_to_calendardate(1, 1, start_month=10)
assert (y, m) == (0, 10)
y, m = utils.hydrodate_to_calendardate(1, 4, start_month=10)
assert (y, m) == (1, 1)
y, m = utils.hydrodate_to_calendardate(1, 12, start_month=10)
assert (y, m) == (1, 9)
y, m = utils.hydrodate_to_calendardate([1, 1, 1], [1, 4, 12],
start_month=10)
np.testing.assert_array_equal(y, [0, 1, 1])
np.testing.assert_array_equal(m, [10, 1, 9])
y, m = utils.calendardate_to_hydrodate(1, 1, start_month=10)
assert (y, m) == (1, 4)
y, m = utils.calendardate_to_hydrodate(1, 9, start_month=10)
assert (y, m) == (1, 12)
y, m = utils.calendardate_to_hydrodate(1, 10, start_month=10)
assert (y, m) == (2, 1)
y, m = utils.calendardate_to_hydrodate([1, 1, 1], [1, 9, 10],
start_month=10)
np.testing.assert_array_equal(y, [1, 1, 2])
np.testing.assert_array_equal(m, [4, 12, 1])
# Roundtrip
time = pd.period_range('0001-01', '1000-12', freq='M')
y, m = utils.calendardate_to_hydrodate(time.year, time.month,
start_month=10)
y, m = utils.hydrodate_to_calendardate(y, m, start_month=10)
np.testing.assert_array_equal(y, time.year)
np.testing.assert_array_equal(m, time.month)
# April
y, m = utils.hydrodate_to_calendardate(1, 1, start_month=4)
assert (y, m) == (0, 4)
y, m = utils.hydrodate_to_calendardate(1, 4, start_month=4)
assert (y, m) == (0, 7)
y, m = utils.hydrodate_to_calendardate(1, 9, start_month=4)
assert (y, m) == (0, 12)
y, m = utils.hydrodate_to_calendardate(1, 10, start_month=4)
assert (y, m) == (1, 1)
y, m = utils.hydrodate_to_calendardate(1, 12, start_month=4)
assert (y, m) == (1, 3)
y, m = utils.hydrodate_to_calendardate([1, 1, 1], [1, 4, 12],
start_month=4)
np.testing.assert_array_equal(y, [0, 0, 1])
np.testing.assert_array_equal(m, [4, 7, 3])
# Roundtrip
time = pd.period_range('0001-01', '1000-12', freq='M')
y, m = utils.calendardate_to_hydrodate(time.year, time.month,
start_month=4)
y, m = utils.hydrodate_to_calendardate(y, m, start_month=4)
np.testing.assert_array_equal(y, time.year)
np.testing.assert_array_equal(m, time.month)
示例10: get_c_e_data
# 需要导入模块: import time [as 别名]
# 或者: from time import year [as 别名]
def get_c_e_data(chooseyear):
date_data = dict(year=[{"name":"一月", "cValue":0, "eValue":0}, {"name":"二月", "cValue":0, "eValue":0}, {"name":"三月", "cValue":0, "eValue":0}, {"name":"四月", "cValue":0, "eValue":0}, {"name":"五月", "cValue":0, "eValue":0}, {"name":"六月", "cValue":0, "eValue":0}, {"name":"七月", "cValue":0, "eValue":0}, {"name":"八月", "cValue":0, "eValue":0}, {"name":"九月", "cValue":0, "eValue":0}, {"name":"十月", "cValue":0, "eValue":0}, {"name":"十一月", "cValue":0, "eValue":0}, {"name":"十二月", "cValue":0, "eValue":0}], c_date=[], e_date=[])
standard_year = 2003
for year in range(standard_year, chooseyear+1):
date_data['c_date'].append({"name": year,"value":0})
date_data['e_date'].append({"name": year, "value": 0})
data = whois.select(whois.creation_date).where(whois.creation_date != '')
for date in data:
try:
try:
time = arrow.get(date.creation_date, 'DD-MMM-YYYY')
date_data['c_date'][time.year-standard_year]['value'] += 1
if time.year == chooseyear:
date_data['year'][time.month-1]["cValue"] += 1
except:
time = arrow.get(date.creation_date)
date_data['c_date'][time.year - standard_year]['value'] += 1
if time.year == chooseyear:
date_data['year'][time.month - 1]["cValue"] += 1
except:
pass
data1 = whois.select(whois.expiration_date).where(whois.expiration_date != '')
for date in data1:
try:
try:
time = arrow.get(date.expiration_date, 'DD-MMM-YYYY')
date_data['e_date'][time.year - standard_year]['value'] += 1
if time.year == chooseyear:
date_data['year'][time.month - 1]["eValue"] += 1
except:
time = arrow.get(date.expiration_date)
date_data['e_date'][time.year - standard_year]['value'] += 1
if time.year == chooseyear:
date_data['year'][time.month - 1]["eValue"] += 1
except:
pass
return json.dumps(date_data, ensure_ascii=False)
# 4.2恶意域名总体生存时间分布展示 横轴动态定