当前位置: 首页>>代码示例>>Python>>正文


Python pool.pool_3d方法代码示例

本文整理汇总了Python中theano.tensor.signal.pool.pool_3d方法的典型用法代码示例。如果您正苦于以下问题:Python pool.pool_3d方法的具体用法?Python pool.pool_3d怎么用?Python pool.pool_3d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在theano.tensor.signal.pool的用法示例。


在下文中一共展示了pool.pool_3d方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pool3d

# 需要导入模块: from theano.tensor.signal import pool [as 别名]
# 或者: from theano.tensor.signal.pool import pool_3d [as 别名]
def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid',
           data_format=None, pool_mode='max'):
    data_format = normalize_data_format(data_format)

    if padding == 'same':
        w_pad = pool_size[0] - 2 if pool_size[0] % 2 == 1 else pool_size[0] - 1
        h_pad = pool_size[1] - 2 if pool_size[1] % 2 == 1 else pool_size[1] - 1
        d_pad = pool_size[2] - 2 if pool_size[2] % 2 == 1 else pool_size[2] - 1
        pad = (w_pad, h_pad, d_pad)
    elif padding == 'valid':
        pad = (0, 0, 0)
    else:
        raise ValueError('Invalid padding:', padding)

    if data_format == 'channels_last':
        x = x.dimshuffle((0, 4, 1, 2, 3))

    if pool_mode == 'max':
        pool_out = pool.pool_3d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=pad,
                                mode='max')
    elif pool_mode == 'avg':
        pool_out = pool.pool_3d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=pad,
                                mode='average_exc_pad')
    else:
        raise ValueError('Invalid pooling mode:', pool_mode)

    if padding == 'same':
        expected_width = (x.shape[2] + strides[0] - 1) // strides[0]
        expected_height = (x.shape[3] + strides[1] - 1) // strides[1]
        expected_depth = (x.shape[4] + strides[2] - 1) // strides[2]

        pool_out = pool_out[:, :,
                            : expected_width,
                            : expected_height,
                            : expected_depth]

    if data_format == 'channels_last':
        pool_out = pool_out.dimshuffle((0, 2, 3, 4, 1))
    return pool_out 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:45,代码来源:theano_backend.py

示例2: pool3d

# 需要导入模块: from theano.tensor.signal import pool [as 别名]
# 或者: from theano.tensor.signal.pool import pool_3d [as 别名]
def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid',
           data_format=None, pool_mode='max'):
    if data_format is None:
        data_format = image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Unknown data_format:', data_format)

    if padding == 'same':
        w_pad = pool_size[0] - 2 if pool_size[0] % 2 == 1 else pool_size[0] - 1
        h_pad = pool_size[1] - 2 if pool_size[1] % 2 == 1 else pool_size[1] - 1
        d_pad = pool_size[2] - 2 if pool_size[2] % 2 == 1 else pool_size[2] - 1
        pad = (w_pad, h_pad, d_pad)
    elif padding == 'valid':
        pad = (0, 0, 0)
    else:
        raise ValueError('Invalid padding:', padding)

    if data_format == 'channels_last':
        x = x.dimshuffle((0, 4, 1, 2, 3))

    if pool_mode == 'max':
        pool_out = pool.pool_3d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=pad,
                                mode='max')
    elif pool_mode == 'avg':
        pool_out = pool.pool_3d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=pad,
                                mode='average_exc_pad')
    else:
        raise ValueError('Invalid pooling mode:', pool_mode)

    if padding == 'same':
        expected_width = (x.shape[2] + strides[0] - 1) // strides[0]
        expected_height = (x.shape[3] + strides[1] - 1) // strides[1]
        expected_depth = (x.shape[4] + strides[2] - 1) // strides[2]

        pool_out = pool_out[:, :,
                            : expected_width,
                            : expected_height,
                            : expected_depth]

    if data_format == 'channels_last':
        pool_out = pool_out.dimshuffle((0, 2, 3, 4, 1))
    return pool_out 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:48,代码来源:theano_backend.py

示例3: pool3d

# 需要导入模块: from theano.tensor.signal import pool [as 别名]
# 或者: from theano.tensor.signal.pool import pool_3d [as 别名]
def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid',
           data_format=None, pool_mode='max'):
    if data_format is None:
        data_format = image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Unknown data_format:', data_format)

    if padding == 'same':
        w_pad = pool_size[0] - 2 if pool_size[0] % 2 == 1 else pool_size[0] - 1
        h_pad = pool_size[1] - 2 if pool_size[1] % 2 == 1 else pool_size[1] - 1
        d_pad = pool_size[2] - 2 if pool_size[2] % 2 == 1 else pool_size[2] - 1
        padding = (w_pad, h_pad, d_pad)
    elif padding == 'valid':
        padding = (0, 0, 0)
    else:
        raise ValueError('Invalid padding:', padding)

    if data_format == 'channels_last':
        x = x.dimshuffle((0, 4, 1, 2, 3))

    if pool_mode == 'max':
        pool_out = pool.pool_3d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=padding,
                                mode='max')
    elif pool_mode == 'avg':
        pool_out = pool.pool_3d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=padding,
                                mode='average_exc_pad')
    else:
        raise ValueError('Invalid pooling mode:', pool_mode)

    if padding == 'same':
        expected_width = (x.shape[2] + strides[0] - 1) // strides[0]
        expected_height = (x.shape[3] + strides[1] - 1) // strides[1]
        expected_depth = (x.shape[4] + strides[2] - 1) // strides[2]

        pool_out = pool_out[:, :,
                            : expected_width,
                            : expected_height,
                            : expected_depth]

    if data_format == 'channels_last':
        pool_out = pool_out.dimshuffle((0, 2, 3, 4, 1))
    return pool_out 
开发者ID:sheffieldnlp,项目名称:deepQuest,代码行数:48,代码来源:theano_backend.py


注:本文中的theano.tensor.signal.pool.pool_3d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。