本文整理汇总了Python中theano.tensor.signal.downsample.max_pool_2d方法的典型用法代码示例。如果您正苦于以下问题:Python downsample.max_pool_2d方法的具体用法?Python downsample.max_pool_2d怎么用?Python downsample.max_pool_2d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类theano.tensor.signal.downsample
的用法示例。
在下文中一共展示了downsample.max_pool_2d方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: model
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def model(X, w, w2, w3, w4, p_drop_conv, p_drop_hidden):
l1a = rectify(conv2d(X, w, border_mode='full'))
l1 = max_pool_2d(l1a, (2, 2))
l1 = dropout(l1, p_drop_conv)
l2a = rectify(conv2d(l1, w2))
l2 = max_pool_2d(l2a, (2, 2))
l2 = dropout(l2, p_drop_conv)
l3a = rectify(conv2d(l2, w3))
l3b = max_pool_2d(l3a, (2, 2))
l3 = T.flatten(l3b, outdim=2)
l3 = dropout(l3, p_drop_conv)
l4 = rectify(T.dot(l3, w4))
l4 = dropout(l4, p_drop_hidden)
pyx = softmax(T.dot(l4, w_o))
return l1, l2, l3, l4, pyx
示例2: __init__
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def __init__(self, input_layer, pool_size, feature_dim=1, implementation='max_pool'):
"""
pool_size: the number of inputs to be pooled together.
feature_dim: the dimension of the input to pool across. By default this is 1
for both dense and convolutional layers (bc01).
For c01b, this has to be set to 0.
implementation:
- 'max_pool': uses theano's max_pool_2d - doesn't work for input dimension > 1024!
- 'reshape': reshapes the tensor to create a 'pool' dimension and then uses T.max.
"""
self.pool_size = pool_size
self.feature_dim = feature_dim
self.implementation = implementation
self.input_layer = input_layer
self.input_shape = self.input_layer.get_output_shape()
self.mb_size = self.input_layer.mb_size
if self.input_shape[self.feature_dim] % self.pool_size != 0:
raise "Feature dimension is not a multiple of the pool size. Doesn't work!"
self.params = []
self.bias_params = []
示例3: output
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def output(self, *args, **kwargs):
input = self.input_layer.output(*args, **kwargs)
if self.implementation == 'max_pool':
# max_pool_2d operates on the last 2 dimensions of the input. So shift the feature dim to be last.
shuffle_order = range(0, self.feature_dim) + range(self.feature_dim + 1, input.ndim) + [self.feature_dim]
unshuffle_order = range(0, self.feature_dim) + [input.ndim - 1] + range(self.feature_dim, input.ndim - 1)
input_shuffled = input.dimshuffle(*shuffle_order)
output_shuffled = max_pool_2d(input_shuffled, (1, self.pool_size))
output = output_shuffled.dimshuffle(*unshuffle_order)
elif self.implementation == 'reshape':
out_feature_dim_size = self.get_output_shape()[self.feature_dim]
pool_shape = self.input_shape[:self.feature_dim] + (out_feature_dim_size, self.pool_size) + self.input_shape[self.feature_dim + 1:]
input_reshaped = input.reshape(pool_shape)
output = T.max(input_reshaped, axis=self.feature_dim + 1)
else:
raise "Uknown implementation string '%s'" % self.implementation
return output
示例4: predict
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def predict(self, new_data, batch_size):
"""
predict for new data
"""
img_shape = None#(batch_size, 1, self.image_shape[2], self.image_shape[3])
conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
if self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
else:
pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
return output
示例5: compute_output
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def compute_output(self, network, in_vw):
mode = network.find_hyperparameter(["mode"])
out_shape = in_vw.shape[:2]
pool_size = in_vw.shape[2:]
pooled = max_pool_2d(in_vw.variable,
ds=pool_size,
mode=mode,
# doesn't make a different here,
# but allows using cuDNN
ignore_border=True)
out_var = pooled.flatten(2)
network.create_vw(
"default",
variable=out_var,
shape=out_shape,
tags={"output"},
)
示例6: local_response_normalization_pool
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def local_response_normalization_pool(in_vw, alpha, k, beta, n):
"""
using built-in pooling, works for N-D tensors (2D/3D/etc.)
"""
from theano.tensor.signal.downsample import max_pool_2d
assert n % 2 == 1, "n must be odd"
in_var = in_vw.variable
batch_size, num_channels = in_vw.symbolic_shape()[:2]
squared = T.sqr(in_var)
reshaped = squared.reshape((batch_size, 1, num_channels, -1))
pooled = max_pool_2d(input=reshaped,
ds=(n, 1),
st=(1, 1),
padding=(n // 2, 0),
ignore_border=True,
mode="average_inc_pad")
unreshaped = pooled.reshape(in_vw.symbolic_shape())
# multiply by n, since we did a mean pool instead of a sum pool
return in_var / (((alpha * n) * unreshaped + k) ** beta)
示例7: predict
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def predict(self, new_data, batch_size):
"""
predict for new data
"""
img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
if self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
else:
pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
return output
示例8: local_response_normalization_2d_pool
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def local_response_normalization_2d_pool(in_vw, alpha, k, beta, n):
"""
using built-in pooling
"""
from theano.tensor.signal.downsample import max_pool_2d
assert n % 2 == 1, "n must be odd"
in_var = in_vw.variable
b, ch, r, c = in_vw.symbolic_shape()
squared = T.sqr(in_var)
reshaped = squared.reshape((b, 1, ch, r * c))
pooled = max_pool_2d(input=reshaped,
ds=(n, 1),
st=(1, 1),
padding=(n // 2, 0),
ignore_border=True,
mode="average_inc_pad")
unreshaped = pooled.reshape((b, ch, r, c))
# multiply by n, since we did a mean pool instead of a sum pool
return in_var / (((alpha * n) * unreshaped + k) ** beta)
示例9: get_output
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def get_output(self, train):
X = self.get_input(train)
newshape = (X.shape[0]*X.shape[1], X.shape[2], X.shape[3], X.shape[4])
Y = theano.tensor.reshape(X, newshape) #collapse num_samples and num_timesteps
output = downsample.max_pool_2d(Y, ds=self.pool_size, st=self.stride, ignore_border=self.ignore_border)
newshape = (X.shape[0], X.shape[1], output.shape[1], output.shape[2], output.shape[3])
return theano.tensor.reshape(output, newshape) #shape is (num_samples, num_timesteps, stack_size, new_nb_row, new_nb_col)
示例10: __init__
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def __init__(self, input, output_maps, input_maps, filter_height, filter_width, poolsize=(2,2)):
self.input = input
self.bound = np.sqrt(6./(input_maps*filter_height*filter_width + output_maps*filter_height*filter_width//np.prod(poolsize)))
self.w = theano.shared(np.asarray(np.random.uniform(low=-self.bound,high=self.bound,size=(output_maps, input_maps, filter_height, filter_width)),dtype=input.dtype))
self.b = theano.shared(np.asarray(np.random.uniform(low=-.5, high=.5, size=(output_maps)),dtype=input.dtype))
self.conv_out = conv2d(input=self.input, filters=self.w)
self.pooled_out = downsample.max_pool_2d(self.conv_out, ds=poolsize, ignore_border=True)
self.output = T.tanh(self.pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
示例11: __init__
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def __init__(self, input, output_maps, input_maps, filter_height, filter_width, maxpool=None):
self.input = input
self.w = theano.shared(self.ortho_weights(output_maps,input_maps,filter_height,filter_width),borrow=True)
self.b = theano.shared(np.zeros((output_maps,), dtype=theano.config.floatX),borrow=True)
self.conv_out = conv2d(input=self.input, filters=self.w, border_mode='half')
if maxpool:
self.conv_out = downsample.max_pool_2d(self.conv_out, ds=maxpool, ignore_border=True)
self.output = T.nnet.elu(self.conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
示例12: build_resnet
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def build_resnet(x, x_shape, features = 64):
y0, y0_shape, p0 = conv(x, x_shape, (features,3,3,3))
y1, y1_shape, p1 = batch_norm(y0, y0_shape)
y2, y2_shape, _ = relu(y1, y1_shape)
#first resnet block
y3, y3_shape, p3 = resnet_bottleneck(y2, y2_shape, features)
y4, y4_shape, p4 = resnet_bottleneck(y3, y3_shape, features)
y5, y5_shape, p5 = resnet_bottleneck(y4, y4_shape, features)
#second resnet block
y6, y6_shape, p6 = resnet_bottleneck(y5, y5_shape, 2*features, 2)
y7, y7_shape, p7 = resnet_bottleneck(y6, y6_shape, features)
y8, y8_shape, p8 = resnet_bottleneck(y7, y7_shape, features)
#third resnet block
y9, y9_shape, p9 = resnet_bottleneck(y8, y8_shape, 4*features, 2)
y10, y10_shape, p10 = resnet_bottleneck(y9, y9_shape, features)
y11, y11_shape, p11 = resnet_bottleneck(y10, y10_shape, features)
#8x8 average pooling
y12 = downsample.max_pool_2d(y11, (8,8), mode="average_inc_pad", ignore_border=True)
y12_shape=(y11_shape[0], y11_shape[1],1,1)
#regression layer (log-softmax)
y13, y13_shape, p13 = conv(y12, y12_shape, (10, y12_shape[1], 1, 1))
y14, y14_shape, _ = log_softmax(y13, y13_shape)
return y14, y14_shape, p0+p1+p3+p4+p5+p6+p7+p8+p9+p10+p11+p13
示例13: _build_expression
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def _build_expression(self):
self.input_ = T.tensor4(dtype=self.input_dtype)
self.expression_ = max_pool_2d(self.input_, self.max_pool_stride,
ignore_border=True)
示例14: set_inpt
# 需要导入模块: from theano.tensor.signal import downsample [as 别名]
# 或者: from theano.tensor.signal.downsample import max_pool_2d [as 别名]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape(self.image_shape)
conv_out = conv.conv2d(
input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
image_shape=self.image_shape)
pooled_out = downsample.max_pool_2d(
input=conv_out, ds=self.poolsize, ignore_border=True)
self.output = self.activation_fn(
pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output_dropout = self.output # no dropout in the convolutional layers