当前位置: 首页>>代码示例>>Python>>正文


Python tensor.shape_padleft方法代码示例

本文整理汇总了Python中theano.tensor.shape_padleft方法的典型用法代码示例。如果您正苦于以下问题:Python tensor.shape_padleft方法的具体用法?Python tensor.shape_padleft怎么用?Python tensor.shape_padleft使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.shape_padleft方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_output_for

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def get_output_for(self, inputs, *args, **kwargs):
        input_, W = inputs
        border_mode = 'half' if self.pad == 'same' else self.pad
        conved, updates = theano.scan(fn=lambda input_, W:
                                             self.convolution(input_[None, :, :, :],
                                                              W,
                                                              (1,) + self.input_shape[1:], self.get_W_shape(),
                                                              subsample=self.stride,
                                                              filter_dilation=self.filter_dilation,
                                                              border_mode=border_mode,
                                                              filter_flip=self.flip_filters).dimshuffle(*range(4)[1:]),
                                      outputs_info=None,
                                      sequences=[input_, W])

        if self.b is None:
            activation = conved
        elif self.untie_biases:
            activation = conved + T.shape_padleft(self.b, 1)
        else:
            activation = conved + self.b.dimshuffle(('x', 0) + ('x',) * self.n)
        return self.nonlinearity(activation) 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:23,代码来源:layers_theano.py

示例2: sym_logdensity

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def sym_logdensity(self, x):
        """ x is a matrix of column datapoints (VxB) V = n_visible, B = batch size """
        def density_given_previous_a_and_x(x, w, V_alpha, b_alpha, V_mu, b_mu, V_sigma, b_sigma, activations_factor, p_prev, a_prev, x_prev):
            a = a_prev + T.dot(T.shape_padright(x_prev, 1), T.shape_padleft(w, 1))
            h = self.nonlinearity(a * activations_factor)  # BxH

            Alpha = T.nnet.softmax(T.dot(h, V_alpha) + T.shape_padleft(b_alpha))  # BxC
            Mu = T.dot(h, V_mu) + T.shape_padleft(b_mu)  # BxC
            Sigma = T.exp((T.dot(h, V_sigma) + T.shape_padleft(b_sigma)))  # BxC
            p = p_prev + log_sum_exp(T.log(Alpha) - T.log(2 * Sigma) - T.abs_(Mu - T.shape_padright(x, 1)) / Sigma)
            return (p, a, x)
        # First element is different (it is predicted from the bias only)
        a0 = T.zeros_like(T.dot(x.T, self.W))  # BxH
        p0 = T.zeros_like(x[0])
        x0 = T.ones_like(x[0])
        ([ps, _as, _xs], updates) = theano.scan(density_given_previous_a_and_x,
                                                sequences=[x, self.W, self.V_alpha, self.b_alpha, self.V_mu, self.b_mu, self.V_sigma, self.b_sigma, self.activation_rescaling],
                                                outputs_info=[p0, a0, x0])
        return (ps[-1], updates) 
开发者ID:MarcCote,项目名称:NADE,代码行数:21,代码来源:MoLaplaceNADE.py

示例3: sym_logdensity

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def sym_logdensity(self, x):
        """ x is a matrix of column datapoints (VxB) V = n_visible, B = batch size """
        def density_given_previous_a_and_x(x, w, v, b, activations_factor, p_prev, a_prev, x_prev):
            a = a_prev + T.dot(T.shape_padright(x_prev, 1), T.shape_padleft(w, 1))
            h = self.nonlinearity(a * activations_factor)  # BxH
            t = T.dot(h, v) + b
            p_xi_is_one = T.nnet.sigmoid(t) * constantX(0.9999) + constantX(0.0001 * 0.5)  # Make logistic regression more robust by having the sigmoid saturate at 0.00005 and 0.99995
            p = p_prev + x * T.log(p_xi_is_one) + (1 - x) * T.log(1 - p_xi_is_one)
            return (p, a, x)
        # First element is different (it is predicted from the bias only)
        a0 = T.zeros_like(T.dot(x.T, self.W))  # BxH
        p0 = T.zeros_like(x[0])
        x0 = T.ones_like(x[0])
        ([ps, _, _], updates) = theano.scan(density_given_previous_a_and_x,
                                            sequences=[x, self.W, self.V, self.b, self.activation_rescaling],
                                            outputs_info=[p0, a0, x0])
        return (ps[-1], updates) 
开发者ID:MarcCote,项目名称:NADE,代码行数:19,代码来源:BernoulliNADE.py

示例4: log_prob

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def log_prob(self, X, Y):
        """ Evaluate the log-probability for the given samples.

        Parameters
        ----------
        Y:      T.tensor
            samples from the upper layer
        X:      T.tensor
            samples from the lower layer

        Returns
        -------
        log_p:  T.tensor
            log-probabilities for the samples in X and Y
        """
        n_X, n_Y = self.get_hyper_params(['n_X', 'n_Y'])
        b, W, U  = self.get_model_params(['b', 'W', 'U'])
        
        W = T.tril(W, k=-1)

        prob_X = self.sigmoid(T.dot(X, W) + T.dot(Y, U) + T.shape_padleft(b))
        log_prob = X*T.log(prob_X) + (1-X)*T.log(1-prob_X)
        log_prob = T.sum(log_prob, axis=1)

        return log_prob 
开发者ID:jbornschein,项目名称:reweighted-ws,代码行数:27,代码来源:darn.py

示例5: sample

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def sample(self, n_samples):
        '''
        Inspired by jbornschein's implementation.
        '''

        z0 = T.zeros((n_samples, self.dim,)).astype(floatX) + T.shape_padleft(self.b)
        rs = self.trng.uniform((self.dim, n_samples), dtype=floatX)

        def _step_sample(i, W_i, r_i, z):
            p_i = T.nnet.sigmoid(z[:, i]) * 0.9999 + 0.000005
            x_i = (r_i <= p_i).astype(floatX)
            z   = z + T.outer(x_i, W_i)
            return z, x_i

        seqs = [T.arange(self.dim), self.W, rs]
        outputs_info = [z0, None]
        non_seqs = []

        (zs, x), updates = scan(_step_sample, seqs, outputs_info, non_seqs,
                                self.dim)

        return x.T, updates 
开发者ID:rdevon,项目名称:cortex_old,代码行数:24,代码来源:darn.py

示例6: do_layer

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def do_layer(activation, ipt, weights, biases):
    """
    Perform a layer operation, i.e. out = activ( xW + b )
        activation: An activation function
        ipt: Tensor of shape (n_batch, X)
        weights: Tensor of shape (X, Y)
        biases: Tensor of shape (Y)

    Returns: Tensor of shape (n_batch, Y)
    """
    xW = T.dot(ipt, weights)
    b = T.shape_padleft(biases)
    return activation( xW + b ) 
开发者ID:hexahedria,项目名称:gated-graph-transformer-network,代码行数:15,代码来源:util.py

示例7: make_dropout_mask

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def make_dropout_mask(shape, keep_frac, srng):
    return T.shape_padleft(T.cast(srng.binomial(shape, p=keep_frac), 'float32') / keep_frac) 
开发者ID:hexahedria,项目名称:gated-graph-transformer-network,代码行数:4,代码来源:util.py

示例8: process

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def process(self, ipt, dropout_masks=Ellipsis):
        if dropout_masks is Ellipsis:
            dropout_masks = None
            append_masks = False
        else:
            append_masks = True
        if self.dropout_keep != 1 and dropout_masks not in ([], None):
            ipt = apply_dropout(ipt, dropout_masks[0])
            dropout_masks = dropout_masks[1:]
        xW = T.dot(ipt, self._W)
        b = T.shape_padleft(self._b)
        if append_masks:
            return self.activation( xW + b ), dropout_masks
        else:
            return self.activation( xW + b ) 
开发者ID:hexahedria,项目名称:gated-graph-transformer-network,代码行数:17,代码来源:layer.py

示例9: get_dropout_masks

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def get_dropout_masks(self, srng, keep_frac):
        """
        Get dropout masks for the GRU.
        """
        return [T.shape_padleft(T.cast(srng.binomial((self._input_width,), p=keep_frac), 'float32') / keep_frac),
                T.shape_padleft(T.cast(srng.binomial((self._output_width,), p=keep_frac), 'float32') / keep_frac)] 
开发者ID:hexahedria,项目名称:gated-graph-transformer-network,代码行数:8,代码来源:strength_weighted_gru.py

示例10: set_output

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def set_output(self):
        self._output = tensor.sum(tensor.shape_padright(self._prev_layer.output) *
                                  tensor.shape_padleft(self.W.val),
                                  axis=-2)
        if self._bias:
            self._output += tensor.shape_padleft(self.b.val) 
开发者ID:chrischoy,项目名称:3D-R2N2,代码行数:8,代码来源:layers.py

示例11: test_vector

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def test_vector(self):
        y_idx = [3]

        def f(a):
            return crossentropy_softmax_1hot(T.shape_padleft(a), y_idx)[0]
        utt.verify_grad(f, [numpy.random.rand(4)]) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:8,代码来源:test_nnet.py

示例12: test_vectors

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def test_vectors(self):
        y_idx = [3]

        def f(a, b):
            return crossentropy_softmax_1hot(T.shape_padleft(a) + b, y_idx)[0]
        utt.verify_grad(f, [numpy.random.rand(4), numpy.random.rand(4)]) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:8,代码来源:test_nnet.py

示例13: fprop

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def fprop(self, all_states):
        if self.ntimes:
            stateshape0 = all_states.shape[0]
            shape0 = TT.switch(TT.gt(self.n, 0), self.n, all_states.shape[0])

            single_frame = TT.shape_padleft(all_states[stateshape0-1])
            mask = TT.alloc(numpy.float32(1), shape0, *[1 for k in xrange(all_states.ndim-1)])
            rval = single_frame * mask
            self.out = rval
            return rval

        single_frame = all_states[all_states.shape[0]-1]
        self.out = single_frame
        return single_frame 
开发者ID:pascanur,项目名称:GroundHog,代码行数:16,代码来源:ff_layers.py

示例14: gaussian_chol

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def gaussian_chol(mean, logvar, chol, sample=None):
    if sample != None:
        raise Exception('Not implemented')
    diag = gaussian_diag(mean, logvar)
    mask = T.shape_padleft(T.triu(T.ones_like(chol[0]), 1))
    sample = diag.sample + T.batched_dot(diag.sample, chol * mask)
    return RandomVariable(sample, diag.logp, diag.entr, mean=mean, logvar=logvar) 
开发者ID:openai,项目名称:iaf,代码行数:9,代码来源:rand.py

示例15: fprop

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import shape_padleft [as 别名]
def fprop(self, x):
        # This is black magic based on broadcasting,
        # that's why variable names don't make any sense.
        a = TT.shape_padleft(x)
        padding = [1] * x.ndim
        b = TT.alloc(numpy.float32(1), self.n_times, *padding)
        self.out = a * b
        return self.out 
开发者ID:sebastien-j,项目名称:LV_groundhog,代码行数:10,代码来源:encdec.py


注:本文中的theano.tensor.shape_padleft方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。