本文整理汇总了Python中theano.tensor.nnet.conv3d2d.conv3d方法的典型用法代码示例。如果您正苦于以下问题:Python conv3d2d.conv3d方法的具体用法?Python conv3d2d.conv3d怎么用?Python conv3d2d.conv3d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类theano.tensor.nnet.conv3d2d
的用法示例。
在下文中一共展示了conv3d2d.conv3d方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_output
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def set_output(self):
padding = self._padding
input_shape = self._input_shape
if np.sum(self._padding) > 0:
padded_input = tensor.alloc(0.0, # Value to fill the tensor
input_shape[0],
input_shape[1] + 2 * padding[1],
input_shape[2],
input_shape[3] + 2 * padding[3],
input_shape[4] + 2 * padding[4])
padded_input = tensor.set_subtensor(
padded_input[:, padding[1]:padding[1] + input_shape[1], :, padding[3]:padding[3] +
input_shape[3], padding[4]:padding[4] + input_shape[4]],
self._prev_layer.output)
else:
padded_input = self._prev_layer.output
self._output = conv3d2d.conv3d(padded_input, self.W.val) + \
self.b.val.dimshuffle('x', 'x', 0, 'x', 'x')
示例2: __init__
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def __init__(self, prev_layers, axis=1):
"""
list of prev layers to concatenate
axis to concatenate
For tensor5, channel dimension is axis=2 (due to theano conv3d
convention). For image, axis=1
"""
assert (len(prev_layers) > 1)
super().__init__(prev_layers[0])
self._axis = axis
self._prev_layers = prev_layers
self._output_shape = self._input_shape.copy()
for prev_layer in prev_layers[1:]:
self._output_shape[axis] += prev_layer._output_shape[axis]
print('Concat the prev layer to [%s]' % ','.join(str(x) for x in self._output_shape))
示例3: conv3d
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def conv3d(x, kernel, strides=(1, 1, 1),
border_mode='valid', dim_ordering='default',
volume_shape=None, filter_shape=None,
filter_dilation=(1, 1, 1)):
'''3D convolution.
# Arguments
kernel: kernel tensor.
strides: strides tuple.
border_mode: string, "same" or "valid".
dim_ordering: "tf" or "th".
Whether to use Theano or TensorFlow dimension ordering
in inputs/kernels/ouputs.
'''
if dim_ordering == 'default':
dim_ordering = image_dim_ordering()
if dim_ordering not in {'th', 'tf'}:
raise Exception('Unknown dim_ordering ' + str(dim_ordering))
# TODO: remove this if statement when Theano without AbstractConv3d is deprecated
if not hasattr(T.nnet, 'conv3d'):
if filter_dilation != (1, 1, 1):
raise Exception('conv3d with filter dilation requires Theano '
'0.9.0dev3 or newer.')
return _old_theano_conv3d(x, kernel, strides, border_mode,
dim_ordering, volume_shape, filter_shape)
x = _preprocess_conv3d_input(x, dim_ordering)
kernel = _preprocess_conv3d_kernel(kernel, dim_ordering)
th_border_mode = _preprocess_border_mode(border_mode)
np_kernel = kernel.eval()
volume_shape = _preprocess_conv3d_volume_shape(dim_ordering, volume_shape)
filter_shape = _preprocess_conv3d_filter_shape(dim_ordering, filter_shape)
conv_out = T.nnet.conv3d(x, kernel,
border_mode=th_border_mode,
subsample=strides,
input_shape=volume_shape,
filter_shape=filter_shape,
filter_dilation=filter_dilation)
conv_out = _postprocess_conv3d_output(conv_out, x, border_mode, np_kernel,
strides, dim_ordering)
return conv_out
# TODO: remove this function when theano without AbstractConv3d is deprecated
示例4: conv3d
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def conv3d(x, kernel, strides=(1, 1, 1),
border_mode='valid', dim_ordering='default',
volume_shape=None, filter_shape=None,
filter_dilation=(1, 1, 1)):
"""3D convolution.
# Arguments
kernel: kernel tensor.
strides: strides tuple.
border_mode: string, "same" or "valid".
dim_ordering: "tf" or "th".
Whether to use Theano or TensorFlow dimension ordering
in inputs/kernels/ouputs.
"""
if dim_ordering == 'default':
dim_ordering = image_dim_ordering()
if dim_ordering not in {'th', 'tf'}:
raise ValueError('Unknown dim_ordering:', dim_ordering)
# TODO: remove this if statement when Theano without AbstractConv3d is deprecated
if not hasattr(T.nnet, 'conv3d'):
if filter_dilation != (1, 1, 1):
raise ValueError('conv3d with filter dilation requires Theano '
'0.9.0dev3 or newer.')
return _old_theano_conv3d(x, kernel, strides, border_mode,
dim_ordering, volume_shape, filter_shape)
x = _preprocess_conv3d_input(x, dim_ordering)
kernel = _preprocess_conv3d_kernel(kernel, dim_ordering)
th_border_mode = _preprocess_border_mode(border_mode)
if hasattr(kernel, '_keras_shape'):
kernel_shape = kernel._keras_shape
else:
# Will only work if `kernel` is a shared variable.
kernel_shape = kernel.eval().shape
volume_shape = _preprocess_conv3d_volume_shape(dim_ordering, volume_shape)
filter_shape = _preprocess_conv3d_filter_shape(dim_ordering, filter_shape)
conv_out = T.nnet.conv3d(x, kernel,
border_mode=th_border_mode,
subsample=strides,
input_shape=volume_shape,
filter_shape=filter_shape,
filter_dilation=filter_dilation)
conv_out = _postprocess_conv3d_output(conv_out, x, border_mode,
kernel_shape, strides, dim_ordering)
return conv_out
# TODO: remove this function when theano without AbstractConv3d is deprecated
示例5: _old_theano_conv3d
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def _old_theano_conv3d(x, kernel, strides=(1, 1, 1),
border_mode='valid', dim_ordering='default',
volume_shape=None, filter_shape=None):
"""
Run on cuDNN if available.
border_mode: string, "same" or "valid".
"""
if dim_ordering == 'default':
dim_ordering = image_dim_ordering()
if dim_ordering not in {'th', 'tf'}:
raise ValueError('Unknown dim_ordering:', dim_ordering)
if border_mode not in {'same', 'valid'}:
raise ValueError('Invalid border mode:', border_mode)
if dim_ordering == 'tf':
# TF uses the last dimension as channel dimension,
# instead of the 2nd one.
# TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
# TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
# TH kernel shape: (out_depth, input_depth, kernel_dim1, kernel_dim2, kernel_dim3)
# TF kernel shape: (kernel_dim1, kernel_dim2, kernel_dim3, input_depth, out_depth)
x = x.dimshuffle((0, 4, 1, 2, 3))
kernel = kernel.dimshuffle((4, 3, 0, 1, 2))
if volume_shape:
volume_shape = (volume_shape[0], volume_shape[4],
volume_shape[1], volume_shape[2], volume_shape[3])
if filter_shape:
filter_shape = (filter_shape[4], filter_shape[3],
filter_shape[0], filter_shape[1], filter_shape[2])
if border_mode == 'same':
assert(strides == (1, 1, 1))
pad_dim1 = (kernel.shape[2] - 1)
pad_dim2 = (kernel.shape[3] - 1)
pad_dim3 = (kernel.shape[4] - 1)
output_shape = (x.shape[0], x.shape[1],
x.shape[2] + pad_dim1,
x.shape[3] + pad_dim2,
x.shape[4] + pad_dim3)
output = T.zeros(output_shape)
indices = (slice(None), slice(None),
slice(pad_dim1 // 2, x.shape[2] + pad_dim1 // 2),
slice(pad_dim2 // 2, x.shape[3] + pad_dim2 // 2),
slice(pad_dim3 // 2, x.shape[4] + pad_dim3 // 2))
x = T.set_subtensor(output[indices], x)
border_mode = 'valid'
border_mode_3d = (border_mode, border_mode, border_mode)
conv_out = conv3d2d.conv3d(signals=x.dimshuffle(0, 2, 1, 3, 4),
filters=kernel.dimshuffle(0, 2, 1, 3, 4),
border_mode=border_mode_3d)
conv_out = conv_out.dimshuffle(0, 2, 1, 3, 4)
# support strides by manually slicing the output
if strides != (1, 1, 1):
conv_out = conv_out[:, :, ::strides[0], ::strides[1], ::strides[2]]
if dim_ordering == 'tf':
conv_out = conv_out.dimshuffle((0, 2, 3, 4, 1))
return conv_out
示例6: conv3d
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def conv3d(x, kernel, strides=(1, 1, 1),
border_mode='valid', dim_ordering='default',
volume_shape=None, filter_shape=None,
filter_dilation=(1, 1, 1)):
'''3D convolution.
# Arguments
kernel: kernel tensor.
strides: strides tuple.
border_mode: string, "same" or "valid".
dim_ordering: "tf" or "th".
Whether to use Theano or TensorFlow dimension ordering
in inputs/kernels/ouputs.
'''
if dim_ordering == 'default':
dim_ordering = image_dim_ordering()
if dim_ordering not in {'th', 'tf'}:
raise ValueError('Unknown dim_ordering:', dim_ordering)
# TODO: remove this if statement when Theano without AbstractConv3d is deprecated
if not hasattr(T.nnet, 'conv3d'):
if filter_dilation != (1, 1, 1):
raise ValueError('conv3d with filter dilation requires Theano '
'0.9.0dev3 or newer.')
return _old_theano_conv3d(x, kernel, strides, border_mode,
dim_ordering, volume_shape, filter_shape)
x = _preprocess_conv3d_input(x, dim_ordering)
kernel = _preprocess_conv3d_kernel(kernel, dim_ordering)
th_border_mode = _preprocess_border_mode(border_mode)
np_kernel = kernel.eval()
volume_shape = _preprocess_conv3d_volume_shape(dim_ordering, volume_shape)
filter_shape = _preprocess_conv3d_filter_shape(dim_ordering, filter_shape)
conv_out = T.nnet.conv3d(x, kernel,
border_mode=th_border_mode,
subsample=strides,
input_shape=volume_shape,
filter_shape=filter_shape,
filter_dilation=filter_dilation)
conv_out = _postprocess_conv3d_output(conv_out, x, border_mode, np_kernel,
strides, dim_ordering)
return conv_out
# TODO: remove this function when theano without AbstractConv3d is deprecated
示例7: _old_theano_conv3d
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def _old_theano_conv3d(x, kernel, strides=(1, 1, 1),
border_mode='valid', dim_ordering='default',
volume_shape=None, filter_shape=None):
'''
Run on cuDNN if available.
border_mode: string, "same" or "valid".
'''
if dim_ordering == 'default':
dim_ordering = image_dim_ordering()
if dim_ordering not in {'th', 'tf'}:
raise ValueError('Unknown dim_ordering:', dim_ordering)
if border_mode not in {'same', 'valid'}:
raise ValueError('Invalid border mode:', border_mode)
if dim_ordering == 'tf':
# TF uses the last dimension as channel dimension,
# instead of the 2nd one.
# TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
# TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
# TH kernel shape: (out_depth, input_depth, kernel_dim1, kernel_dim2, kernel_dim3)
# TF kernel shape: (kernel_dim1, kernel_dim2, kernel_dim3, input_depth, out_depth)
x = x.dimshuffle((0, 4, 1, 2, 3))
kernel = kernel.dimshuffle((4, 3, 0, 1, 2))
if volume_shape:
volume_shape = (volume_shape[0], volume_shape[4],
volume_shape[1], volume_shape[2], volume_shape[3])
if filter_shape:
filter_shape = (filter_shape[4], filter_shape[3],
filter_shape[0], filter_shape[1], filter_shape[2])
if border_mode == 'same':
assert(strides == (1, 1, 1))
pad_dim1 = (kernel.shape[2] - 1)
pad_dim2 = (kernel.shape[3] - 1)
pad_dim3 = (kernel.shape[4] - 1)
output_shape = (x.shape[0], x.shape[1],
x.shape[2] + pad_dim1,
x.shape[3] + pad_dim2,
x.shape[4] + pad_dim3)
output = T.zeros(output_shape)
indices = (slice(None), slice(None),
slice(pad_dim1 // 2, x.shape[2] + pad_dim1 // 2),
slice(pad_dim2 // 2, x.shape[3] + pad_dim2 // 2),
slice(pad_dim3 // 2, x.shape[4] + pad_dim3 // 2))
x = T.set_subtensor(output[indices], x)
border_mode = 'valid'
border_mode_3d = (border_mode, border_mode, border_mode)
conv_out = conv3d2d.conv3d(signals=x.dimshuffle(0, 2, 1, 3, 4),
filters=kernel.dimshuffle(0, 2, 1, 3, 4),
border_mode=border_mode_3d)
conv_out = conv_out.dimshuffle(0, 2, 1, 3, 4)
# support strides by manually slicing the output
if strides != (1, 1, 1):
conv_out = conv_out[:, :, ::strides[0], ::strides[1], ::strides[2]]
if dim_ordering == 'tf':
conv_out = conv_out.dimshuffle((0, 2, 3, 4, 1))
return conv_out
示例8: conv3d
# 需要导入模块: from theano.tensor.nnet import conv3d2d [as 别名]
# 或者: from theano.tensor.nnet.conv3d2d import conv3d [as 别名]
def conv3d(x, kernel, strides=(1, 1, 1),
border_mode='valid', dim_ordering='th',
volume_shape=None, filter_shape=None):
'''
Run on cuDNN if available.
border_mode: string, "same" or "valid".
'''
if dim_ordering not in {'th', 'tf'}:
raise Exception('Unknown dim_ordering ' + str(dim_ordering))
if border_mode not in {'same', 'valid'}:
raise Exception('Invalid border mode: ' + str(border_mode))
if dim_ordering == 'tf':
# TF uses the last dimension as channel dimension,
# instead of the 2nd one.
# TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
# TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
# TH kernel shape: (out_depth, input_depth, kernel_dim1, kernel_dim2, kernel_dim3)
# TF kernel shape: (kernel_dim1, kernel_dim2, kernel_dim3, input_depth, out_depth)
x = x.dimshuffle((0, 4, 1, 2, 3))
kernel = kernel.dimshuffle((4, 3, 0, 1, 2))
if volume_shape:
volume_shape = (volume_shape[0], volume_shape[4],
volume_shape[1], volume_shape[2], volume_shape[3])
if filter_shape:
filter_shape = (filter_shape[4], filter_shape[3],
filter_shape[0], filter_shape[1], filter_shape[2])
if border_mode == 'same':
assert(strides == (1, 1, 1))
pad_dim1 = (kernel.shape[2] - 1)
pad_dim2 = (kernel.shape[3] - 1)
pad_dim3 = (kernel.shape[4] - 1)
output_shape = (x.shape[0], x.shape[1],
x.shape[2] + pad_dim1,
x.shape[3] + pad_dim2,
x.shape[4] + pad_dim3)
output = T.zeros(output_shape)
indices = (slice(None), slice(None),
slice(pad_dim1 // 2, x.shape[2] + pad_dim1 // 2),
slice(pad_dim2 // 2, x.shape[3] + pad_dim2 // 2),
slice(pad_dim3 // 2, x.shape[4] + pad_dim3 // 2))
x = T.set_subtensor(output[indices], x)
border_mode = 'valid'
border_mode_3d = (border_mode, border_mode, border_mode)
conv_out = conv3d2d.conv3d(signals=x.dimshuffle(0, 2, 1, 3, 4),
filters=kernel.dimshuffle(0, 2, 1, 3, 4),
border_mode=border_mode_3d)
conv_out = conv_out.dimshuffle(0, 2, 1, 3, 4)
# support strides by manually slicing the output
if strides != (1, 1, 1):
conv_out = conv_out[:, :, ::strides[0], ::strides[1], ::strides[2]]
if dim_ordering == 'tf':
conv_out = conv_out.dimshuffle((0, 2, 3, 4, 1))
return conv_out