本文整理汇总了Python中theano.tensor.jacobian方法的典型用法代码示例。如果您正苦于以下问题:Python tensor.jacobian方法的具体用法?Python tensor.jacobian怎么用?Python tensor.jacobian使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类theano.tensor
的用法示例。
在下文中一共展示了tensor.jacobian方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dot_not_output
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def test_dot_not_output(self):
"""
Test the case where the vector input to the dot is not already an
output of the inner function.
"""
v = T.vector()
m = T.matrix()
output = T.dot(v, m)
# Compile the function twice, once with the optimization and once
# without
opt_mode = mode.including("scan")
f_opt = theano.function([v, m], T.jacobian(output, v), mode=opt_mode)
no_opt_mode = mode.excluding("scanOp_pushout_output")
f_no_opt = theano.function([v, m], T.jacobian(output, v), mode=no_opt_mode)
# Ensure that the optimization was performed correctly in f_opt
# The inner function of scan should have only one output and it should
# not be the result of a Dot
scan_node = [node for node in f_opt.maker.fgraph.toposort()
if isinstance(node.op, Scan)][0]
assert len(scan_node.op.outputs) == 1
assert not isinstance(scan_node.op.outputs[0], T.Dot)
# Ensure that the function compiled with the optimization produces
# the same results as the function compiled without
v_value = numpy.random.random((4)).astype(config.floatX)
m_value = numpy.random.random((4, 5)).astype(config.floatX)
output_opt = f_opt(v_value, m_value)
output_no_opt = f_no_opt(v_value, m_value)
utt.assert_allclose(output_opt, output_no_opt)
示例2: test001_jacobian_vector
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def test001_jacobian_vector():
x = tensor.vector()
y = x * 2
rng = numpy.random.RandomState(seed=utt.fetch_seed())
# test when the jacobian is called with a tensor as wrt
Jx = tensor.jacobian(y, x)
f = theano.function([x], Jx)
vx = rng.uniform(size=(10,)).astype(theano.config.floatX)
assert numpy.allclose(f(vx), numpy.eye(10) * 2)
# test when the jacobian is called with a tuple as wrt
Jx = tensor.jacobian(y, (x,))
assert isinstance(Jx, tuple)
f = theano.function([x], Jx[0])
vx = rng.uniform(size=(10,)).astype(theano.config.floatX)
assert numpy.allclose(f(vx), numpy.eye(10) * 2)
# test when the jacobian is called with a list as wrt
Jx = tensor.jacobian(y, [x])
assert isinstance(Jx, list)
f = theano.function([x], Jx[0])
vx = rng.uniform(size=(10,)).astype(theano.config.floatX)
assert numpy.allclose(f(vx), numpy.eye(10) * 2)
# test when the jacobian is called with a list of two elements
z = tensor.vector()
y = x * z
Js = tensor.jacobian(y, [x, z])
f = theano.function([x, z], Js)
vx = rng.uniform(size=(10,)).astype(theano.config.floatX)
vz = rng.uniform(size=(10,)).astype(theano.config.floatX)
vJs = f(vx, vz)
evx = numpy.zeros((10, 10))
evz = numpy.zeros((10, 10))
numpy.fill_diagonal(evx, vx)
numpy.fill_diagonal(evz, vz)
assert numpy.allclose(vJs[0], evz)
assert numpy.allclose(vJs[1], evx)
示例3: test003_jacobian_scalar
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def test003_jacobian_scalar():
x = tensor.scalar()
y = x * 2
rng = numpy.random.RandomState(seed=utt.fetch_seed())
# test when the jacobian is called with a tensor as wrt
Jx = tensor.jacobian(y, x)
f = theano.function([x], Jx)
vx = numpy.cast[theano.config.floatX](rng.uniform())
assert numpy.allclose(f(vx), 2)
# test when the jacobian is called with a tuple as wrt
Jx = tensor.jacobian(y, (x,))
assert isinstance(Jx, tuple)
f = theano.function([x], Jx[0])
vx = numpy.cast[theano.config.floatX](rng.uniform())
assert numpy.allclose(f(vx), 2)
# test when the jacobian is called with a list as wrt
Jx = tensor.jacobian(y, [x])
assert isinstance(Jx, list)
f = theano.function([x], Jx[0])
vx = numpy.cast[theano.config.floatX](rng.uniform())
assert numpy.allclose(f(vx), 2)
# test when the jacobian is called with a list of two elements
z = tensor.scalar()
y = x * z
Jx = tensor.jacobian(y, [x, z])
f = theano.function([x, z], Jx)
vx = numpy.cast[theano.config.floatX](rng.uniform())
vz = numpy.cast[theano.config.floatX](rng.uniform())
vJx = f(vx, vz)
assert numpy.allclose(vJx[0], vz)
assert numpy.allclose(vJx[1], vx)
示例4: _get_updates
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def _get_updates(self):
n = self.params['batch_size']
N = self.params['train_size']
prec_lik = self.params['prec_lik']
prec_prior = self.params['prec_prior']
gc_norm = self.params['gc_norm']
alpha = self.params['alpha']
mu = self.params['mu']
use_gamma = self.params['use_gamma']
# compute log-likelihood
error = self.model_outputs - self.true_outputs
logliks = log_normal(error, prec_lik)
sumloglik = logliks.sum()
meanloglik = sumloglik / n
# compute gradients
grads = tensor.grad(cost = meanloglik, wrt = self.weights)
# update preconditioning matrix
V_t_next = [alpha * v + (1 - alpha) * g * g for g, v in zip(grads, self.V_t)]
G_t = [1. / (mu + tensor.sqrt(v)) for v in V_t_next]
logprior = log_prior_normal(self.weights, prec_prior)
grads_prior = tensor.grad(cost = logprior, wrt = self.weights)
updates = []
[updates.append((v, v_n)) for v, v_n in zip(self.V_t, V_t_next)]
for p, g, gp, gt in zip(self.weights, grads, grads_prior, G_t):
# inject noise
noise = tensor.sqrt(self.lr * gt) * trng.normal(p.shape)
if use_gamma:
# compute gamma
gamma = nlinalg.extract_diag(tensor.jacobian(gt.flatten(), p).flatten(ndim=2))
gamma = gamma.reshape(p.shape)
updates.append((p, p + 0.5 * self.lr * ((gt * (gp + N * g)) + gamma) + noise))
else:
updates.append((p, p + 0.5 * self.lr * (gt * (gp + N * g)) + noise))
return updates, sumloglik
示例5: nigp_updates
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def nigp_updates(self):
idims = self.D
msg = 'Compiling derivative of mean function at training inputs'
utils.print_with_stamp(msg, self.name)
# we need to evaluate the derivative of the mean function at the
# training inputs
def dM2_f_i(mx, beta, hyp, X):
hyps = (hyp[:idims+1], hyp[idims+1])
kernel_func = partial(cov.Sum, hyps, self.covs)
k = kernel_func(mx[None, :], X).flatten()
mean = k.dot(beta)
dmean = tt.jacobian(mean.flatten(), mx)
return tt.square(dmean.flatten())
def dM2_f(beta, hyp, X):
# iterate over training inputs
dM2_o, updts = theano.scan(fn=dM2_f_i, sequences=[X],
non_sequences=[beta, hyp, X],
allow_gc=False)
return dM2_o
# iterate over output dimensions
dM2, updts = theano.scan(fn=dM2_f, sequences=[self.beta, self.hyp],
non_sequences=[self.X], allow_gc=False)
# update the nigp parameter using the derivative of the mean function
nigp = ((dM2[:, :, :, None]*self.X_cov[None]).sum(2)*dM2).sum(-1)
nigp_updts = updts + (self.nigp, nigp)
return nigp_updts
示例6: compute_output
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def compute_output(self, network, h_vw, x_vw):
batch_axis = network.find_hyperparameter(["batch_axis"])
if batch_axis is None:
# NOTE: this code path is not tested!
jacobian = T.jacobian(h_vw.variable.ravel(), x_vw.variable)
res = (jacobian ** 2).mean()
res_shape = ()
else:
batch_size = h_vw.symbolic_shape()[batch_axis]
# sum across batch to avoid disconnected input error
# ravel to be a vector
h_var = h_vw.variable.sum(axis=batch_axis).ravel()
x_var = x_vw.variable
# shape of result = h_var.shape + x_var.shape
jacobian = T.jacobian(h_var, x_var)
# put batch axis as first dimension
# adding 1 to batch axis, because len(h_var.shape) == 1
swapped_jacobian = jacobian.swapaxes(0, batch_axis + 1)
# convert to a matrix and mean over elements in a batch
reshaped_jacobian = swapped_jacobian.reshape((batch_size, -1))
res = (reshaped_jacobian ** 2).mean(axis=1)
res_shape = (h_vw.shape[batch_axis],)
network.create_vw(
"default",
variable=res,
shape=res_shape,
tags={"output"},
)
示例7: Lop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def Lop(f, wrt, eval_points, consider_constant=None,
disconnected_inputs='raise'):
"""
Computes the L operation on `f` wrt to `wrt` evaluated at points given
in `eval_points`. Mathematically this stands for the jacobian of `f` wrt
to `wrt` left muliplied by the eval points.
:type f: Variable or list of Variables
`f` stands for the output of the computational graph to which you
want to apply the L operator
:type wrt: Variable or list of `Variables`s
variables for which you compute the L operator of the expression
described by `f`
:type eval_points: Variable or list of Variables
evalutation points for each of the variables in `f`
:rtype: Variable or list/tuple of Variables depending on type of f
:return: symbolic expression such that
L_op[i] = sum_i ( d f[i] / d wrt[j]) eval_point[i]
where the indices in that expression are magic multidimensional
indices that specify both the position within a list and all
coordinates of the tensor element in the last
If `f` is a list/tuple, then return a list/tuple with the results.
"""
if type(eval_points) not in (list, tuple):
eval_points = [eval_points]
using_list = isinstance(wrt, list)
using_tuple = isinstance(wrt, tuple)
if not isinstance(f, (list, tuple)):
f = [f]
# make copies of f and grads so we don't modify the client's copy
f = list(f)
grads = list(eval_points)
if not isinstance(wrt, (list, tuple)):
wrt = [wrt]
assert len(f) == len(grads)
known = dict(izip(f, grads))
ret = grad(cost=None, known_grads=known,
consider_constant=consider_constant, wrt=wrt,
disconnected_inputs=disconnected_inputs)
return format_as(using_list, using_tuple, ret)
#########################
# Gradient
#########################
示例8: test002_jacobian_matrix
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def test002_jacobian_matrix():
x = tensor.matrix()
y = 2 * x.sum(axis=0)
rng = numpy.random.RandomState(seed=utt.fetch_seed())
ev = numpy.zeros((10, 10, 10))
for dx in xrange(10):
ev[dx, :, dx] = 2.
# test when the jacobian is called with a tensor as wrt
Jx = tensor.jacobian(y, x)
f = theano.function([x], Jx)
vx = rng.uniform(size=(10, 10)).astype(theano.config.floatX)
assert numpy.allclose(f(vx), ev)
# test when the jacobian is called with a tuple as wrt
Jx = tensor.jacobian(y, (x,))
assert isinstance(Jx, tuple)
f = theano.function([x], Jx[0])
vx = rng.uniform(size=(10, 10)).astype(theano.config.floatX)
assert numpy.allclose(f(vx), ev)
# test when the jacobian is called with a list as wrt
Jx = tensor.jacobian(y, [x])
assert isinstance(Jx, list)
f = theano.function([x], Jx[0])
vx = rng.uniform(size=(10, 10)).astype(theano.config.floatX)
assert numpy.allclose(f(vx), ev)
# test when the jacobian is called with a list of two elements
z = tensor.matrix()
y = (x * z).sum(axis=1)
Js = tensor.jacobian(y, [x, z])
f = theano.function([x, z], Js)
vx = rng.uniform(size=(10, 10)).astype(theano.config.floatX)
vz = rng.uniform(size=(10, 10)).astype(theano.config.floatX)
vJs = f(vx, vz)
evx = numpy.zeros((10, 10, 10))
evz = numpy.zeros((10, 10, 10))
for dx in xrange(10):
evx[dx, dx, :] = vx[dx, :]
evz[dx, dx, :] = vz[dx, :]
assert numpy.allclose(vJs[0], evz)
assert numpy.allclose(vJs[1], evx)
示例9: test_vectors
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import jacobian [as 别名]
def test_vectors(self):
try:
import theano.tensor as T
from theano import function
except:
return
for MT in [False, True]:
# Set up variables and function
vals = [np.random.randn(20) for i in range(5)]
f = lambda a, b, c, d, e : a + (b * c) - d ** e
# Set up our objects
Cs = [ch.Ch(v) for v in vals]
C_result = f(*Cs)
C_result.MT = MT
# Set up Theano equivalents
Ts = T.dvectors('T1', 'T2', 'T3', 'T4', 'T5')
TF = f(*Ts)
T_result = function(Ts, TF)
if False:
import theano.gradient
which = 1
theano_sse = (TF**2.).sum()
theano_grad = theano.gradient.grad(theano_sse, Ts[which])
theano_fn = function(Ts, theano_grad)
print(theano_fn(*vals))
C_result_grad = ch.SumOfSquares(C_result).dr_wrt(Cs[which])
print(C_result_grad)
# if True:
# aaa = np.linalg.solve(C_result_grad.T.dot(C_result_grad), C_result_grad.dot(np.zeros(C_result_grad.shape[1])))
# theano_hes = theano.R_obbb = theano.R_op()
import pdb; pdb.set_trace()
# Make sure values and derivatives are equal
np.testing.assert_array_equal(C_result.r, T_result(*vals))
for k in range(len(vals)):
theano_derivative = function(Ts, T.jacobian(TF, Ts[k]))(*vals)
our_derivative = np.array(C_result.dr_wrt(Cs[k]).todense())
#print theano_derivative, our_derivative
# Theano produces has more nans than we do during exponentiation.
# So we test only on entries where Theano is without NaN's
without_nans = np.nonzero(np.logical_not(np.isnan(theano_derivative.flatten())))[0]
np.testing.assert_array_equal(theano_derivative.flatten()[without_nans], our_derivative.flatten()[without_nans])