当前位置: 首页>>代码示例>>Python>>正文


Python extra_ops.cumsum方法代码示例

本文整理汇总了Python中theano.tensor.extra_ops.cumsum方法的典型用法代码示例。如果您正苦于以下问题:Python extra_ops.cumsum方法的具体用法?Python extra_ops.cumsum怎么用?Python extra_ops.cumsum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在theano.tensor.extra_ops的用法示例。


在下文中一共展示了extra_ops.cumsum方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_Strides1D

# 需要导入模块: from theano.tensor import extra_ops [as 别名]
# 或者: from theano.tensor.extra_ops import cumsum [as 别名]
def test_Strides1D(self):
        x = T.fvector('x')

        for axis in [0, None, -1]:
            a = np.random.random((42,)).astype("float32")
            cumsum_function = theano.function([x], cumsum(x, axis=axis),
                                              mode=self.mode)

            slicings = [slice(None, None, None),    # Normal strides
                        slice(None, None, 2),       # Stepped strides
                        slice(None, None, -1),      # Negative strides
                        ]

            # Cartesian product of all slicings to test.
            for slicing in itertools.product(slicings, repeat=x.ndim):
                f = theano.function([x], cumsum(x[slicing], axis=axis),
                                    mode=self.mode)
                assert [n for n in f.maker.fgraph.toposort()
                        if isinstance(n.op, GpuCumsum)]
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a))
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis),
                                    cumsum_function(a[slicing])) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:24,代码来源:test_extra_ops.py

示例2: test_Strides2D

# 需要导入模块: from theano.tensor import extra_ops [as 别名]
# 或者: from theano.tensor.extra_ops import cumsum [as 别名]
def test_Strides2D(self):
        x = T.fmatrix('x')

        for axis in [0, 1, None, -1, -2]:
            a = np.random.random((42, 30)).astype("float32")
            cumsum_function = theano.function([x], cumsum(x, axis=axis),
                                              mode=self.mode)

            slicings = [slice(None, None, None),    # Normal strides
                        slice(None, None, 2),       # Stepped strides
                        slice(None, None, -1),      # Negative strides
                        ]

            # Cartesian product of all slicings to test.
            for slicing in itertools.product(slicings, repeat=x.ndim):
                f = theano.function([x], cumsum(x[slicing], axis=axis),
                                    mode=self.mode)
                assert [n for n in f.maker.fgraph.toposort()
                        if isinstance(n.op, GpuCumsum)]
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a))
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis),
                                    cumsum_function(a[slicing])) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:24,代码来源:test_extra_ops.py

示例3: test_Strides3D

# 需要导入模块: from theano.tensor import extra_ops [as 别名]
# 或者: from theano.tensor.extra_ops import cumsum [as 别名]
def test_Strides3D(self):
        x = T.ftensor3('x')

        for axis in [0, 1, 2, None, -1, -2, -3]:
            a = np.random.random((42, 30, 25)).astype("float32")
            cumsum_function = theano.function([x], cumsum(x, axis=axis),
                                              mode=self.mode)

            slicings = [slice(None, None, None),    # Normal strides
                        slice(None, None, 2),       # Stepped strides
                        slice(None, None, -1),      # Negative strides
                        ]

            # Cartesian product of all slicings to test.
            for slicing in itertools.product(slicings, repeat=x.ndim):
                f = theano.function([x], cumsum(x[slicing], axis=axis),
                                    mode=self.mode)
                assert [n for n in f.maker.fgraph.toposort()
                        if isinstance(n.op, GpuCumsum)]
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a))
                utt.assert_allclose(np.cumsum(a[slicing], axis=axis),
                                    cumsum_function(a[slicing])) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:24,代码来源:test_extra_ops.py

示例4: test_GpuCumsum1D

# 需要导入模块: from theano.tensor import extra_ops [as 别名]
# 或者: from theano.tensor.extra_ops import cumsum [as 别名]
def test_GpuCumsum1D(self):
        block_max_size = self.max_threads_dim0 * 2

        x = T.fvector('x')
        f = theano.function([x], cumsum(x), mode=self.mode)
        assert [n for n in f.maker.fgraph.toposort()
                if isinstance(n.op, GpuCumsum)]

        # Extensive testing for the first 1025 sizes
        a = np.random.random(1025).astype("float32")
        for i in xrange(a.shape[0]):
            utt.assert_allclose(np.cumsum(a[:i]), f(a[:i]))

        # Use multiple GPU threadblocks
        a = np.random.random((block_max_size+2,)).astype("float32")
        utt.assert_allclose(np.cumsum(a), f(a))

        # Use recursive cumsum
        a = np.ones((block_max_size*(block_max_size+1)+2,),
                    dtype="float32")
        utt.assert_allclose(np.cumsum(a), f(a)) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:23,代码来源:test_extra_ops.py

示例5: cost

# 需要导入模块: from theano.tensor import extra_ops [as 别名]
# 或者: from theano.tensor.extra_ops import cumsum [as 别名]
def cost(self, observed, at_risk):
		"""Calculates the cox negative log likelihood.

		Args:
			observed: 1D array. Event status; 0 means censored.
			at_risk: 1D array. Element i of this array indicates the index of the
					 first patient in the at risk group of patient i, when patients
					 are sorted by increasing time to event.
		Returns:
			Objective function to be maximized.
		"""
		prediction = self.output
		# Subtracts maximum to facilitate computation.
		factorizedPred = prediction - prediction.max()
		exp = T.exp(factorizedPred)[::-1]
		# Calculates the reversed partial cumulative sum.
		partial_sum = Te.cumsum(exp)[::-1] + 1 
		# Adds the subtracted maximum back.
		log_at_risk = T.log(partial_sum[at_risk]) + prediction.max() 
		diff = prediction - log_at_risk
		cost = T.sum(T.dot(observed, diff))
		return cost 
开发者ID:prasadseemakurthi,项目名称:Deep-Neural-Networks-HealthCare,代码行数:24,代码来源:RiskLayer.py

示例6: test_GpuCumsum2D

# 需要导入模块: from theano.tensor import extra_ops [as 别名]
# 或者: from theano.tensor.extra_ops import cumsum [as 别名]
def test_GpuCumsum2D(self):
        block_max_size = self.max_threads_dim0 * 2

        x = T.fmatrix('x')
        for shape_axis, axis in zip([0, 1, 0, 1, 0], [0, 1, None, -1, -2]):
            f = theano.function([x], cumsum(x, axis=axis), mode=self.mode)
            assert [n for n in f.maker.fgraph.toposort()
                    if isinstance(n.op, GpuCumsum)]

            # Extensive testing for the first 1025 sizes
            a_shape = [5, 5]
            a_shape[shape_axis] = 1025
            a = np.random.random(a_shape).astype("float32")
            slices = [slice(None), slice(None)]
            for i in xrange(a.shape[shape_axis]):
                slices[shape_axis] = slice(i)
                fa = f(a[slices])
                npa = np.cumsum(a[slices], axis=axis)
                utt.assert_allclose(npa, fa)

            # Use multiple GPU threadblocks
            a_shape = [5, 5]
            a_shape[shape_axis] = block_max_size+2
            a = np.random.random(a_shape).astype("float32")
            utt.assert_allclose(np.cumsum(a, axis=axis), f(a))

            # Use multiple GPU gridblocks
            a_shape = [4, 4]
            a_shape[1-shape_axis] = self.max_grid_size1+1
            a = np.random.random(a_shape).astype("float32")
            utt.assert_allclose(np.cumsum(a, axis=axis), f(a), rtol=5e-5)

            # Use recursive cumsum
            a_shape = [3, 3]
            a_shape[shape_axis] = block_max_size*(block_max_size+1)+2
            a = np.random.random(a_shape).astype("float32")
            a = np.sign(a-0.5).astype("float32")  # Avoid floating point error
            utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:40,代码来源:test_extra_ops.py

示例7: test_GpuCumsum4D

# 需要导入模块: from theano.tensor import extra_ops [as 别名]
# 或者: from theano.tensor.extra_ops import cumsum [as 别名]
def test_GpuCumsum4D(self):
        # Should not use the GPU version.
        x = T.ftensor4('x')
        f = theano.function([x], cumsum(x, axis=1), mode=self.mode)
        assert [n for n in f.maker.fgraph.toposort()
                if isinstance(n.op, CumsumOp)] 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:8,代码来源:test_extra_ops.py


注:本文中的theano.tensor.extra_ops.cumsum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。