当前位置: 首页>>代码示例>>Python>>正文


Python tensor.dvector方法代码示例

本文整理汇总了Python中theano.tensor.dvector方法的典型用法代码示例。如果您正苦于以下问题:Python tensor.dvector方法的具体用法?Python tensor.dvector怎么用?Python tensor.dvector使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.dvector方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: timeit_2vector_theano

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def timeit_2vector_theano(init, nb_element=1e6, nb_repeat=3, nb_call=int(1e2), expr="a**2 + b**2 + 2*a*b"):
    t3 = timeit.Timer("tf(av,bv)",
                      """
import theano
import theano.tensor as T
import numexpr as ne
from theano.tensor import exp
%(init)s
av=a
bv=b
a=T.dvector()
b=T.dvector()
tf= theano.function([a,b],%(expr)s)
"""%locals()
)
    ret=t3.repeat(nb_repeat,nb_call)
    return np.asarray(ret) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:19,代码来源:gen_graph.py

示例2: test_infer_shape

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_infer_shape(self):
        a = tensor.dvector()
        self._compile_and_check([a], [self.op(a, 16, 0)],
                                [numpy.random.rand(12)],
                               self.op_class)
        a = tensor.dmatrix()
        for var in [self.op(a, 16, 1), self.op(a, None, 1),
                     self.op(a, 16, None), self.op(a, None, None)]:
            self._compile_and_check([a], [var],
                                    [numpy.random.rand(12, 4)],
                                    self.op_class)
        b = tensor.iscalar()
        for var in [self.op(a, 16, b), self.op(a, None, b)]:
            self._compile_and_check([a, b], [var],
                                    [numpy.random.rand(12, 4), 0],
                                    self.op_class) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:18,代码来源:test_fourier.py

示例3: test_merge_opt_runtime

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_merge_opt_runtime():
    """In the original merge optimization, the following graph took
    like caused the MERGE optimizer to exhibit really bad performance
    (quadratic? exponential?)

    Ironically, there is actually no merging to do in this graph.

    """
    x = T.dvector()
    for i in xrange(50):
        if i:
            r = r + r/10
        else:
            r = x
    t = time.time()
    f = theano.function([x], r, mode='FAST_COMPILE')
    # FAST_RUN does in-place optimizer which requires a lot of
    # toposorting, which is actually pretty slow at the moment.  This
    # test was designed to test MergeOptimizer... so I'm leaving
    # toposort optimizations for a later date.
    dt = time.time() - t

    # it should never take longer than 5 seconds to compile this graph
    assert dt < 5.0, dt 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:26,代码来源:test_gc.py

示例4: test_broadcast_arguments

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_broadcast_arguments(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dvector()
        high = tensor.dcol()
        out = random.uniform(low=low, high=high)
        assert out.ndim == 2
        f = function([low, high], out)

        rng_seed = numpy.random.RandomState(utt.fetch_seed()).randint(2**30)
        numpy_rng = numpy.random.RandomState(int(rng_seed))
        val0 = f([-5, .5, 0, 1], [[1.]])
        val1 = f([.9], [[1.], [1.1], [1.5]])
        val2 = f([-5, .5, 0, 1], [[1.], [1.1], [1.5]])

        numpy_val0 = numpy_rng.uniform(low=[-5, .5, 0, 1], high=[1.])
        numpy_val1 = numpy_rng.uniform(low=[.9], high=[[1.], [1.1], [1.5]])
        numpy_val2 = numpy_rng.uniform(low=[-5, .5, 0, 1], high=[[1.], [1.1], [1.5]])

        assert numpy.all(val0 == numpy_val0)
        assert numpy.all(val1 == numpy_val1)
        assert numpy.all(val2 == numpy_val2) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:23,代码来源:test_shared_randomstreams.py

示例5: test_basic_usage

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_basic_usage(self):
        rf = RandomFunction(numpy.random.RandomState.uniform, tensor.dvector)
        assert not rf.inplace
        assert getattr(rf, 'destroy_map', {}) == {}

        rng_R = random_state_type()

        # If calling RandomFunction directly, all args have to be specified,
        # because shape will have to be moved to the end
        post_r, out = rf(rng_R, (4,), 0., 1.)

        assert out.type == tensor.dvector

        f = compile.function([rng_R], out)

        rng_state0 = numpy.random.RandomState(utt.fetch_seed())

        f_0 = f(rng_state0)
        f_1 = f(rng_state0)

        assert numpy.all(f_0 == f_1) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:23,代码来源:test_raw_random.py

示例6: test_broadcast_arguments

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_broadcast_arguments(self):
        rng_R = random_state_type()
        low = tensor.dvector()
        high = tensor.dcol()
        post_r, out = uniform(rng_R, low=low, high=high)
        assert out.ndim == 2
        f = compile.function([rng_R, low, high], [post_r, out],
                             accept_inplace=True)

        rng_state0 = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(utt.fetch_seed())
        post0, val0 = f(rng_state0, [-5, .5, 0, 1], [[1.]])
        post1, val1 = f(post0, [.9], [[1.], [1.1], [1.5]])
        post2, val2 = f(post1, [-5, .5, 0, 1], [[1.], [1.1], [1.5]])

        numpy_val0 = numpy_rng.uniform(low=[-5, .5, 0, 1], high=[1.])
        numpy_val1 = numpy_rng.uniform(low=[.9], high=[[1.], [1.1], [1.5]])
        numpy_val2 = numpy_rng.uniform(low=[-5, .5, 0, 1],
                                       high=[[1.], [1.1], [1.5]])

        assert numpy.all(val0 == numpy_val0), (val0, numpy_val0)
        assert numpy.all(val1 == numpy_val1)
        assert numpy.all(val2 == numpy_val2) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:25,代码来源:test_raw_random.py

示例7: test_param_strict

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_param_strict(self):

        a = tensor.dvector()
        b = shared(7)
        out = a + b

        f = pfunc([In(a, strict=False)], [out])
        # works, rand generates float64 by default
        f(numpy.random.rand(8))
        # works, casting is allowed
        f(numpy.array([1, 2, 3, 4], dtype='int32'))

        f = pfunc([In(a, strict=True)], [out])
        try:
            # fails, f expects float64
            f(numpy.array([1, 2, 3, 4], dtype='int32'))
        except TypeError:
            pass 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:20,代码来源:test_pfunc.py

示例8: test_param_mutable

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_param_mutable(self):
        a = tensor.dvector()
        a_out = a * 2  # assuming the op which makes this "in place" triggers

        # using mutable=True will let fip change the value in aval
        fip = pfunc([In(a, mutable=True)], [a_out], mode='FAST_RUN')
        aval = numpy.random.rand(10)
        aval2 = aval.copy()
        assert numpy.all(fip(aval) == (aval2 * 2))
        assert not numpy.all(aval == aval2)

        # using mutable=False should leave the input untouched
        f = pfunc([In(a, mutable=False)], [a_out], mode='FAST_RUN')
        aval = numpy.random.rand(10)
        aval2 = aval.copy()
        assert numpy.all(f(aval) == (aval2 * 2))
        assert numpy.all(aval == aval2) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:19,代码来源:test_pfunc.py

示例9: test_infer_shape

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_infer_shape(self):
        x = dmatrix('x')
        x.tag.test_value = np.zeros((2, 2))
        y = dvector('y')
        y.tag.test_value = [0, 0]

        def infer_shape(node, shapes):
            x, y = shapes
            return [y]

        @as_op([dmatrix, dvector], dvector, infer_shape)
        def cumprod_plus(x, y):
            return np.cumprod(x) + y

        self._compile_and_check([x, y], [cumprod_plus(x, y)],
                                [[[1.5, 5], [2, 2]], [1, 100, 2, 200]],
                                cumprod_plus.__class__, warn=False) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:19,代码来源:test_ops.py

示例10: test_pydotprint_long_name

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_pydotprint_long_name():
    """This is a REALLY PARTIAL TEST.

    It prints a graph where there are variable and apply nodes whose long
    names are different, but not the shortened names.
    We should not merge those nodes in the dot graph.

    """

    # Skip test if pydot is not available.
    if not theano.printing.pydot_imported:
        raise SkipTest('pydot not available')

    x = tensor.dvector()
    mode = theano.compile.mode.get_default_mode().excluding("fusion")
    f = theano.function([x], [x * 2, x + x], mode=mode)
    f([1, 2, 3, 4])

    theano.printing.pydotprint(f, max_label_size=5,
                               print_output_file=False)
    theano.printing.pydotprint([x * 2, x + x],
                               max_label_size=5,
                               print_output_file=False) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:25,代码来源:test_printing.py

示例11: test_wrong_input

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_wrong_input(self):
        """
        Make sure errors are raised when image and kernel are not 4D tensors
        """
        self.assertRaises(Exception, self.validate, (3, 2, 8, 8), (4, 2, 5, 5),
                          'valid', input=T.dmatrix())
        self.assertRaises(Exception, self.validate, (3, 2, 8, 8), (4, 2, 5, 5),
                          'valid', filters=T.dvector())
        self.assertRaises(Exception, self.validate, (3, 2, 8, 8), (4, 2, 5, 5),
                          'valid', input=T.dtensor3()) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:12,代码来源:test_corr.py

示例12: test_fail

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_fail(self):
        """
        Test that conv2d fails for dimensions other than 2 or 3.
        """
        self.assertRaises(Exception, conv.conv2d, T.dtensor4(), T.dtensor3())
        self.assertRaises(Exception, conv.conv2d, T.dtensor3(), T.dvector()) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:8,代码来源:test_conv.py

示例13: test3

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test3(self):
        a = tensor.dvector()
        w2 = sort(a)
        f = theano.function([a], w2)
        gv = f(self.v_val)
        gt = np.sort(self.v_val)
        assert np.allclose(gv, gt) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:9,代码来源:test_sort.py

示例14: test_multiple_inplace

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_multiple_inplace(self):
        x = tensor.dmatrix('x')
        y = tensor.dvector('y')
        z = tensor.dvector('z')
        f = theano.function([x, y, z],
                            [tensor.dot(y, x), tensor.dot(z,x)],
                            mode=mode_blas_opt)
        vx = numpy.random.rand(3, 3)
        vy = numpy.random.rand(3)
        vz = numpy.random.rand(3)
        out = f(vx, vy, vz)
        assert numpy.allclose(out[0], numpy.dot(vy, vx))
        assert numpy.allclose(out[1], numpy.dot(vz, vx))
        assert len([n for n in f.maker.fgraph.apply_nodes
                    if isinstance(n.op, tensor.AllocEmpty)]) == 2 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:17,代码来源:test_blas_c.py

示例15: test_uniform_vector

# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import dvector [as 别名]
def test_uniform_vector(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dvector()
        high = tensor.dvector()
        out = random.uniform(low=low, high=high)
        assert out.ndim == 1
        f = function([low, high], out)

        low_val = [.1, .2, .3]
        high_val = [1.1, 2.2, 3.3]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(low_val, high_val)
        numpy_val0 = numpy_rng.uniform(low=low_val, high=high_val)
        print('THEANO', val0)
        print('NUMPY', numpy_val0)
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(low_val[:-1], high_val[:-1])
        numpy_val1 = numpy_rng.uniform(low=low_val[:-1], high=high_val[:-1])
        print('THEANO', val1)
        print('NUMPY', numpy_val1)
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([low, high], random.uniform(low=low, high=high, size=(3,)))
        val2 = g(low_val, high_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.uniform(low=low_val, high=high_val, size=(3,))
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, low_val[:-1], high_val[:-1]) 
开发者ID:muhanzhang,项目名称:D-VAE,代码行数:36,代码来源:test_shared_randomstreams.py


注:本文中的theano.tensor.dvector方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。