本文整理汇总了Python中theano.tensor.Rop方法的典型用法代码示例。如果您正苦于以下问题:Python tensor.Rop方法的具体用法?Python tensor.Rop怎么用?Python tensor.Rop使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类theano.tensor
的用法示例。
在下文中一共展示了tensor.Rop方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_multiple_outputs
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def test_multiple_outputs(self):
m = tensor.matrix('m')
v = tensor.vector('v')
m_ = tensor.matrix('m_')
v_ = tensor.vector('v_')
mval = self.rng.uniform(size=(3, 7)).astype(theano.config.floatX)
vval = self.rng.uniform(size=(7,)).astype(theano.config.floatX)
m_val = self.rng.uniform(size=(3, 7)).astype(theano.config.floatX)
v_val = self.rng.uniform(size=(7,)).astype(theano.config.floatX)
rop_out1 = tensor.Rop([m, v, m + v], [m, v], [m_, v_])
assert isinstance(rop_out1, list)
assert len(rop_out1) == 3
rop_out2 = tensor.Rop((m, v, m + v), [m, v], [m_, v_])
assert isinstance(rop_out2, tuple)
assert len(rop_out2) == 3
all_outs = []
for o in rop_out1, rop_out2:
all_outs.extend(o)
f = theano.function([m, v, m_, v_], all_outs)
f(mval, vval, m_val, v_val)
示例2: hessian_times_vector
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def hessian_times_vector(gradient, parameter, vector, r_op=False):
"""Return an expression for the Hessian times a vector.
Parameters
----------
gradient : :class:`~tensor.TensorVariable`
The gradient of a cost with respect to `parameter`
parameter : :class:`~tensor.TensorVariable`
The parameter with respect to which to take the gradient
vector : :class:`~tensor.TensorVariable`
The vector with which to multiply the Hessian
r_op : bool, optional
Whether to use :func:`~tensor.gradient.Rop` or not. Defaults to
``False``. Which solution is fastest normally needs to be
determined by profiling.
"""
if r_op:
return tensor.Rop(gradient, parameter, vector)
return tensor.grad(tensor.sum(gradient * vector), parameter)
示例3: __call__
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def __call__(self, v, cost, parameters, damp):
# compute Gauss-Newton Matrix right-multiplied by `v`
Jv = T.Rop(self._s, parameters, v)
HJv = T.grad(T.sum(T.grad(cost, self._s) * Jv), self._s,
consider_constant=[Jv])
JHJv = T.grad(T.sum(HJv * self._s), parameters,
consider_constant=[HJv, Jv])
# apply Tikhonov damping
JHJv = [JHJvi + damp * vi for JHJvi, vi in zip(JHJv, v)]
return JHJv
示例4: check_nondiff_rop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def check_nondiff_rop(self, y):
""" If your op is not differentiable(so you can't define Rop)
test that an error is raised."""
raised = False
try:
tensor.Rop(y, self.x, self.v)
except ValueError:
raised = True
if not raised:
self.fail((
'Op did not raise an error even though the function'
' is not differentiable'))
示例5: test_invalid_input
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def test_invalid_input(self):
success = False
try:
tensor.Rop(0., [tensor.matrix()], [tensor.vector()])
success = True
except ValueError:
pass
assert not success
示例6: test_Rop_dot_bug_18Oct2013_Jeremiah
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def test_Rop_dot_bug_18Oct2013_Jeremiah(self):
# This test refers to a bug reported by Jeremiah Lowin on 18th Oct
# 2013. The bug consists when through a dot operation there is only
# one differentiable path (i.e. there is no gradient wrt to one of
# the inputs).
x = tensor.arange(20.0).reshape([1, 20])
v = theano.shared(numpy.ones([20]))
d = tensor.dot(x, v).sum()
tensor.Rop(tensor.grad(d, v), v, v)
示例7: check_nondiff_rop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def check_nondiff_rop(self, y):
""" If your op is not differentiable(so you can't define Rop)
test that an error is raised."""
raised = False
try:
tmp = tensor.Rop(y, self.x, self.v)
except ValueError:
raised = True
if not raised:
self.fail((
'Op did not raise an error even though the function'
' is not differentiable'))
示例8: _get_updates_for
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def _get_updates_for(self, param, grad):
D_tm1 = util.shared_like(param, 'D_ewma')
v = self.rng.normal(param.shape)
if self.hv_method == 'rop':
Hv = TT.Rop(grad, param, v)
if self.hv_method == 'lop':
Hv = TT.Lop(grad, param, v)
if self.hv_method == 'grad':
Hv = TT.grad(TT.sum(grad * v), param)
D_t = self.ewma * D_tm1 + (1 - self.ewma) * Hv * Hv
denom = TT.sqrt(D_t) + self.epsilon
yield D_tm1, D_t
yield param, grad * self.learning_rate / denom
示例9: test_theano_operator
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def test_theano_operator():
"""Test the ODL->Theano operator wrapper."""
# Define ODL operator
matrix = np.random.rand(3, 2)
odl_op = odl.MatrixOperator(matrix)
# Define evaluation points
x = [1., 2.]
dy = [1., 2., 3.]
# Create Theano placeholders
x_theano = T.dvector()
dy_theano = T.dvector()
# Create Theano layer from odl operator
odl_op_layer = odl.contrib.theano.TheanoOperator(odl_op)
# Build computation graphs
y_theano = odl_op_layer(x_theano)
y_theano_func = theano.function([x_theano], y_theano)
dy_theano_func = theano.function([x_theano, dy_theano],
T.Rop(y_theano, x_theano, dy_theano))
# Evaluate using Theano
result = y_theano_func(x)
expected = odl_op(x)
assert all_almost_equal(result, expected)
# Evaluate the adjoint of the derivative, called gradient in Theano
result = dy_theano_func(x, dy)
expected = odl_op.derivative(x).adjoint(dy)
assert all_almost_equal(result, expected)
示例10: test_rop_lop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def test_rop_lop():
mx = tensor.matrix('mx')
mv = tensor.matrix('mv')
v = tensor.vector('v')
y = matrix_inverse(mx).sum(axis=0)
yv = tensor.Rop(y, mx, mv)
rop_f = function([mx, mv], yv)
sy, _ = theano.scan(lambda i, y, x, v: (tensor.grad(y[i], x) * v).sum(),
sequences=tensor.arange(y.shape[0]),
non_sequences=[y, mx, mv])
scan_f = function([mx, mv], sy)
rng = numpy.random.RandomState(utt.fetch_seed())
vx = numpy.asarray(rng.randn(4, 4), theano.config.floatX)
vv = numpy.asarray(rng.randn(4, 4), theano.config.floatX)
v1 = rop_f(vx, vv)
v2 = scan_f(vx, vv)
assert _allclose(v1, v2), ('ROP mismatch: %s %s' % (v1, v2))
raised = False
try:
tensor.Rop(
theano.clone(y, replace={mx: break_op(mx)}),
mx,
mv)
except ValueError:
raised = True
if not raised:
raise Exception((
'Op did not raised an error even though the function'
' is not differentiable'))
vv = numpy.asarray(rng.uniform(size=(4,)), theano.config.floatX)
yv = tensor.Lop(y, mx, v)
lop_f = function([mx, v], yv)
sy = tensor.grad((v * y).sum(), mx)
scan_f = function([mx, v], sy)
v1 = lop_f(vx, vv)
v2 = scan_f(vx, vv)
assert _allclose(v1, v2), ('LOP mismatch: %s %s' % (v1, v2))
示例11: check_mat_rop_lop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def check_mat_rop_lop(self, y, out_shape):
""" Test the Rop/Lop when input is a matrix and the output is a vector
:param y: the output variable of the op applied to self.mx
:param out_shape: Used to generate a random tensor
corresponding to the evaluation point of the Rop
(i.e. the tensor with which you multiply the
Jacobian). It should be a tuple of ints.
If the Op has more than 1 input, one of them must be mx, while
others must be shared variables / constants. We will test only
against the input self.mx, so you must call
check_mat_rop_lop/check_rop_lop for the other inputs.
We expect all inputs/outputs have dtype floatX.
If you want to test an Op with an output matrix, add a sum
after the Op you want to test.
"""
vx = numpy.asarray(self.rng.uniform(size=self.mat_in_shape),
theano.config.floatX)
vv = numpy.asarray(self.rng.uniform(size=self.mat_in_shape),
theano.config.floatX)
yv = tensor.Rop(y, self.mx, self.mv)
rop_f = function([self.mx, self.mv], yv, on_unused_input='ignore')
sy, _ = theano.scan(lambda i, y, x, v:
(tensor.grad(y[i], x) * v).sum(),
sequences=tensor.arange(y.shape[0]),
non_sequences=[y, self.mx, self.mv])
scan_f = function([self.mx, self.mv], sy, on_unused_input='ignore')
v1 = rop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('ROP mismatch: %s %s' % (v1, v2))
self.check_nondiff_rop(theano.clone(y, replace={self.mx: break_op(self.mx)}))
vv = numpy.asarray(self.rng.uniform(size=out_shape), theano.config.floatX)
yv = tensor.Lop(y, self.mx, self.v)
lop_f = function([self.mx, self.v], yv)
sy = tensor.grad((self.v * y).sum(), self.mx)
scan_f = function([self.mx, self.v], sy)
v1 = lop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('LOP mismatch: %s %s' % (v1, v2))
示例12: check_rop_lop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def check_rop_lop(self, y, out_shape):
"""
As check_mat_rop_lop, except the input is self.x which is a
vector. The output is still a vector.
"""
# TEST ROP
vx = numpy.asarray(self.rng.uniform(size=self.in_shape),
theano.config.floatX)
vv = numpy.asarray(self.rng.uniform(size=self.in_shape),
theano.config.floatX)
yv = tensor.Rop(y, self.x, self.v)
rop_f = function([self.x, self.v], yv, on_unused_input='ignore')
J, _ = theano.scan(lambda i, y, x: tensor.grad(y[i], x),
sequences=tensor.arange(y.shape[0]),
non_sequences=[y, self.x])
sy = tensor.dot(J, self.v)
scan_f = function([self.x, self.v], sy, on_unused_input='ignore')
v1 = rop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('ROP mismatch: %s %s' % (v1, v2))
known_fail = False
try:
self.check_nondiff_rop(theano.clone(y, replace={self.x: break_op(self.x)}))
except AssertionError:
known_fail = True
# TEST LOP
vx = numpy.asarray(self.rng.uniform(size=self.in_shape),
theano.config.floatX)
vv = numpy.asarray(self.rng.uniform(size=out_shape),
theano.config.floatX)
yv = tensor.Lop(y, self.x, self.v)
lop_f = function([self.x, self.v], yv, on_unused_input='ignore')
J, _ = theano.scan(lambda i, y, x: tensor.grad(y[i], x),
sequences=tensor.arange(y.shape[0]),
non_sequences=[y, self.x])
sy = tensor.dot(self.v, J)
scan_f = function([self.x, self.v], sy)
v1 = lop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('LOP mismatch: %s %s' % (v1, v2))
if known_fail:
raise SkipTest('Rop does not handle non-differentiable inputs '
'correctly. Bug exposed by fixing Add.grad method.')
示例13: get_grads
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def get_grads(self, state_below, target, mask = None, reg = None,
scale=None, sum_over_time=True, use_noise=True,
additional_inputs=None):
"""
This function implements both the forward and backwards pass of this
layer. The reason we do this in a single function is because for the
factorized softmax layer is hard to rely on grad and get an
optimized graph. For uniformity I've implemented this method for
this layer as well (though one doesn't need to use it)
:param state_below: theano variable representing the input to the
softmax layer
:param target: theano variable representing the target for this
layer
:return: cost, dC_dstate_below, param_grads, new_properties
dC_dstate_below is a computational graph representing the
gradient of the cost wrt to state_below
param_grads is a list containing the gradients wrt to the
different parameters of the layer
new_properties is a dictionary containing additional properties
of the model; properties are theano expression that are
evaluated and reported by the model
"""
cost = self.get_cost(state_below,
target,
mask = mask,
reg = reg,
scale=scale,
sum_over_time=sum_over_time,
use_noise=use_noise,
additional_inputs=additional_inputs)
grads = TT.grad(cost, self.params)
if self.additional_gradients:
for new_grads, to_replace, properties in self.additional_gradients:
gparams, params = new_grads
prop_expr = [x[1] for x in properties]
replace = [(x[0], TT.grad(cost, x[1])) for x in to_replace]
rval = theano.clone(gparams + prop_expr,
replace=replace)
gparams = rval[:len(gparams)]
prop_expr = rval[len(gparams):]
self.properties += [(x[0], y) for x,y in zip(properties,
prop_expr)]
for gp, p in zip(gparams, params):
grads[self.params.index(p)] += gp
self.cost = cost
self.grads = grads
def Gvs_fn(*args):
w = (1 - self.model_output) * self.model_output * state_below.shape[1]
Gvs = TT.Lop(self.model_output, self.params,
TT.Rop(self.model_output, self.params, args)/w)
return Gvs
self.Gvs = Gvs_fn
return cost, grads
示例14: check_mat_rop_lop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def check_mat_rop_lop(self, y, out_shape):
""" Test the Rop/Lop when input is a matrix and the output is a vector
:param y: the output variable of the op applied to self.mx
:param out_shape: Used to generate a random tensor
corresponding to the evaluation point of the Rop
(i.e. the tensor with which you multiply the
Jacobian). It should be a tuple of ints.
If the Op has more than 1 input, one of them must be mx, while
others must be shared variables / constants. We will test only
against the input self.mx, so you must call
check_mat_rop_lop/check_rop_lop for the other inputs.
We expect all inputs/outputs have dtype floatX.
If you want to test an Op with an output matrix, add a sum
after the Op you want to test.
"""
vx = numpy.asarray(self.rng.uniform(size=self.mat_in_shape),
theano.config.floatX)
vv = numpy.asarray(self.rng.uniform(size=self.mat_in_shape),
theano.config.floatX)
yv = tensor.Rop(y, self.mx, self.mv)
rop_f = function([self.mx, self.mv], yv, on_unused_input='ignore')
sy, _ = theano.scan(lambda i, y, x, v: \
(tensor.grad(y[i], x) * v).sum(),
sequences=tensor.arange(y.shape[0]),
non_sequences=[y, self.mx, self.mv])
scan_f = function([self.mx, self.mv], sy, on_unused_input='ignore')
v1 = rop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('ROP mismatch: %s %s' % (v1, v2))
self.check_nondiff_rop(theano.clone(y,
replace={self.mx: break_op(self.mx)}))
vv = numpy.asarray(self.rng.uniform(size=out_shape),
theano.config.floatX)
yv = tensor.Lop(y, self.mx, self.v)
lop_f = function([self.mx, self.v], yv)
sy = tensor.grad((self.v * y).sum(), self.mx)
scan_f = function([self.mx, self.v], sy)
v1 = lop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('LOP mismatch: %s %s' % (v1, v2))
示例15: check_rop_lop
# 需要导入模块: from theano import tensor [as 别名]
# 或者: from theano.tensor import Rop [as 别名]
def check_rop_lop(self, y, out_shape):
"""
As check_mat_rop_lop, except the input is self.x which is a
vector. The output is still a vector.
"""
# TEST ROP
vx = numpy.asarray(self.rng.uniform(size=self.in_shape),
theano.config.floatX)
vv = numpy.asarray(self.rng.uniform(size=self.in_shape),
theano.config.floatX)
yv = tensor.Rop(y, self.x, self.v)
rop_f = function([self.x, self.v], yv, on_unused_input='ignore')
J, _ = theano.scan(lambda i, y, x: tensor.grad(y[i], x),
sequences=tensor.arange(y.shape[0]),
non_sequences=[y, self.x])
sy = tensor.dot(J, self.v)
scan_f = function([self.x, self.v], sy, on_unused_input='ignore')
v1 = rop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('ROP mismatch: %s %s' % (v1, v2))
known_fail = False
try:
self.check_nondiff_rop(theano.clone(y,
replace={self.x: break_op(self.x)}))
except AssertionError:
known_fail = True
# TEST LOP
vx = numpy.asarray(self.rng.uniform(size=self.in_shape),
theano.config.floatX)
vv = numpy.asarray(self.rng.uniform(size=out_shape),
theano.config.floatX)
yv = tensor.Lop(y, self.x, self.v)
lop_f = function([self.x, self.v], yv, on_unused_input='ignore')
J, _ = theano.scan(lambda i, y, x: tensor.grad(y[i], x),
sequences=tensor.arange(y.shape[0]),
non_sequences=[y, self.x])
sy = tensor.dot(self.v, J)
scan_f = function([self.x, self.v], sy)
v1 = lop_f(vx, vv)
v2 = scan_f(vx, vv)
assert numpy.allclose(v1, v2), ('LOP mismatch: %s %s' % (v1, v2))
if known_fail:
raise SkipTest('Rop does not handle non-differentiable inputs '
'correctly. Bug exposed by fixing Add.grad method.')