本文整理汇总了Python中theano.sparse方法的典型用法代码示例。如果您正苦于以下问题:Python theano.sparse方法的具体用法?Python theano.sparse怎么用?Python theano.sparse使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类theano
的用法示例。
在下文中一共展示了theano.sparse方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: placeholder
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
'''Instantiate an input data placeholder variable.
'''
if dtype is None:
dtype = floatx()
if shape is None and ndim is None:
raise ValueError('Specify either a shape or ndim value.')
if shape is not None:
ndim = len(shape)
else:
shape = tuple([None for _ in range(ndim)])
broadcast = (False,) * ndim
if sparse:
_assert_sparse_module()
x = th_sparse_module.csr_matrix(name=name, dtype=dtype)
else:
x = T.TensorType(dtype, broadcast)(name)
x._keras_shape = shape
x._uses_learning_phase = False
return x
示例2: make_node
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def make_node(self, x, y):
x, y = sparse.as_sparse_variable(x), tensor.as_tensor_variable(y)
out_dtype = scalar.upcast(x.type.dtype, y.type.dtype)
if self.inplace:
assert out_dtype == y.dtype
indices, indptr, data = csm_indices(x), csm_indptr(x), csm_data(x)
# We either use CSC or CSR depending on the format of input
assert self.format == x.type.format
# The magic number two here arises because L{scipy.sparse}
# objects must be matrices (have dimension 2)
assert y.type.ndim == 2
out = tensor.TensorType(dtype=out_dtype,
broadcastable=y.type.broadcastable)()
return gof.Apply(self,
[data, indices, indptr, y],
[out])
示例3: local_structured_dot
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def local_structured_dot(node):
if node.op == sparse._structured_dot:
a, b = node.inputs
if a.type.format == 'csc':
a_val, a_ind, a_ptr, a_shape = csm_properties(a)
a_nsparse = a_shape[0]
return [sd_csc(a_val, a_ind, a_ptr, a_nsparse, b)]
if a.type.format == 'csr':
a_val, a_ind, a_ptr, a_shape = csm_properties(a)
return [sd_csr(a_val, a_ind, a_ptr, b)]
return False
# Commented out because
# a) it is only slightly faster than scipy these days, and sometimes a little
# slower, and
# b) the resulting graphs make it very difficult for an op to do size checking
# on the matrices involved. dimension mismatches are hard to detect sensibly.
# register_specialize(local_structured_dot)
示例4: test_local_csm_properties_csm
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_local_csm_properties_csm():
data = tensor.vector()
indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
tensor.ivector())
mode = theano.compile.mode.get_default_mode()
mode = mode.including("specialize", "local_csm_properties_csm")
for CS, cast in [(sparse.CSC, sp.csc_matrix),
(sparse.CSR, sp.csr_matrix)]:
f = theano.function([data, indices, indptr, shape],
sparse.csm_properties(
CS(data, indices, indptr, shape)),
mode=mode)
assert not any(
isinstance(node.op, (sparse.CSM, sparse.CSMProperties))
for node in f.maker.fgraph.toposort())
v = cast(random_lil((10, 40),
config.floatX, 3))
f(v.data, v.indices, v.indptr, v.shape)
示例5: test_local_csm_grad_c
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_local_csm_grad_c():
raise SkipTest("Opt disabled as it don't support unsorted indices")
if not theano.config.cxx:
raise SkipTest("G++ not available, so we need to skip this test.")
data = tensor.vector()
indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
tensor.ivector())
mode = theano.compile.mode.get_default_mode()
if theano.config.mode == 'FAST_COMPILE':
mode = theano.compile.Mode(linker='c|py', optimizer='fast_compile')
mode = mode.including("specialize", "local_csm_grad_c")
for CS, cast in [(sparse.CSC, sp.csc_matrix), (sparse.CSR, sp.csr_matrix)]:
cost = tensor.sum(sparse.DenseFromSparse()(CS(data, indices, indptr, shape)))
f = theano.function(
[data, indices, indptr, shape],
tensor.grad(cost, data),
mode=mode)
assert not any(isinstance(node.op, sparse.CSMGrad) for node
in f.maker.fgraph.toposort())
v = cast(random_lil((10, 40),
config.floatX, 3))
f(v.data, v.indices, v.indptr, v.shape)
示例6: test_local_mul_s_d
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_local_mul_s_d():
if not theano.config.cxx:
raise SkipTest("G++ not available, so we need to skip this test.")
mode = theano.compile.mode.get_default_mode()
mode = mode.including("specialize", "local_mul_s_d")
for sp_format in sparse.sparse_formats:
inputs = [getattr(theano.sparse, sp_format + '_matrix')(),
tensor.matrix()]
f = theano.function(inputs,
sparse.mul_s_d(*inputs),
mode=mode)
assert not any(isinstance(node.op, sparse.MulSD) for node
in f.maker.fgraph.toposort())
示例7: test_local_mul_s_v
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_local_mul_s_v():
if not theano.config.cxx:
raise SkipTest("G++ not available, so we need to skip this test.")
mode = theano.compile.mode.get_default_mode()
mode = mode.including("specialize", "local_mul_s_v")
for sp_format in ['csr']: # Not implemented for other format
inputs = [getattr(theano.sparse, sp_format + '_matrix')(),
tensor.vector()]
f = theano.function(inputs,
sparse.mul_s_v(*inputs),
mode=mode)
assert not any(isinstance(node.op, sparse.MulSV) for node
in f.maker.fgraph.toposort())
示例8: test_local_sampling_dot_csr
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_local_sampling_dot_csr():
if not theano.config.cxx:
raise SkipTest("G++ not available, so we need to skip this test.")
mode = theano.compile.mode.get_default_mode()
mode = mode.including("specialize", "local_sampling_dot_csr")
for sp_format in ['csr']: # Not implemented for other format
inputs = [tensor.matrix(),
tensor.matrix(),
getattr(theano.sparse, sp_format + '_matrix')()]
f = theano.function(inputs,
sparse.sampling_dot(*inputs),
mode=mode)
if theano.config.blas.ldflags:
assert not any(isinstance(node.op, sparse.SamplingDot) for node
in f.maker.fgraph.toposort())
else:
# SamplingDotCSR's C implementation needs blas, so it should not
# be inserted
assert not any(isinstance(node.op, sparse.opt.SamplingDotCSR) for node
in f.maker.fgraph.toposort())
示例9: test_equality_case
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_equality_case(self):
"""
Test assuring normal behaviour when values
in the matrices are equal
"""
scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]]
if (bool(scipy_ver < [0, 13])):
raise SkipTest("comparison operators need newer release of scipy")
x = sparse.csc_matrix()
y = theano.tensor.matrix()
m1 = sp.csc_matrix((2, 2), dtype=theano.config.floatX)
m2 = numpy.asarray([[0, 0], [0, 0]], dtype=theano.config.floatX)
for func in self.testsDic:
op = func(y, x)
f = theano.function([y, x], op)
self.assertTrue(numpy.array_equal(f(m2, m1),
self.testsDic[func](m2, m1)))
示例10: test_csm_unsorted
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_csm_unsorted(self):
"""
Test support for gradients of unsorted inputs.
"""
sp_types = {'csc': sp.csc_matrix,
'csr': sp.csr_matrix}
for format in ['csr', 'csc', ]:
for dtype in ['float32', 'float64']:
x = tensor.tensor(dtype=dtype, broadcastable=(False,))
y = tensor.ivector()
z = tensor.ivector()
s = tensor.ivector()
# Sparse advanced indexing produces unsorted sparse matrices
a = sparse_random_inputs(format, (4, 3), out_dtype=dtype,
unsorted_indices=True)[1][0]
# Make sure it's unsorted
assert not a.has_sorted_indices
def my_op(x):
y = tensor.constant(a.indices)
z = tensor.constant(a.indptr)
s = tensor.constant(a.shape)
return tensor.sum(
dense_from_sparse(CSM(format)(x, y, z, s) * a))
verify_grad_sparse(my_op, [a.data])
示例11: test_dot_sparse_sparse
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_dot_sparse_sparse(self):
# test dot for 2 input sparse matrix
sparse_dtype = 'float64'
sp_mat = {'csc': sp.csc_matrix,
'csr': sp.csr_matrix,
'bsr': sp.csr_matrix}
for sparse_format_a in ['csc', 'csr', 'bsr']:
for sparse_format_b in ['csc', 'csr', 'bsr']:
a = SparseType(sparse_format_a, dtype=sparse_dtype)()
b = SparseType(sparse_format_b, dtype=sparse_dtype)()
d = theano.dot(a, b)
f = theano.function([a, b], theano.Out(d, borrow=True))
topo = f.maker.fgraph.toposort()
for M, N, K, nnz in [(4, 3, 2, 3),
(40, 30, 20, 3),
(40, 30, 20, 30),
(400, 3000, 200, 6000),
]:
a_val = sp_mat[sparse_format_a](
random_lil((M, N), sparse_dtype, nnz))
b_val = sp_mat[sparse_format_b](
random_lil((N, K), sparse_dtype, nnz))
f(a_val, b_val)
示例12: test_csr_dense
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_csr_dense(self):
x = theano.sparse.csr_matrix('x')
y = theano.tensor.matrix('y')
v = theano.tensor.vector('v')
for (x, y, x_v, y_v) in [(x, y, self.x_csr, self.y),
(x, v, self.x_csr, self.v_100),
(v, x, self.v_10, self.x_csr)]:
f_a = theano.function([x, y], theano.sparse.dot(x, y))
f_b = lambda x, y: x * y
utt.assert_allclose(f_a(x_v, y_v), f_b(x_v, y_v))
# Test infer_shape
self._compile_and_check([x, y], [theano.sparse.dot(x, y)],
[x_v, y_v],
(Dot, Usmm, UsmmCscDense))
示例13: test_csc_dense
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_csc_dense(self):
x = theano.sparse.csc_matrix('x')
y = theano.tensor.matrix('y')
v = theano.tensor.vector('v')
for (x, y, x_v, y_v) in [(x, y, self.x_csc, self.y),
(x, v, self.x_csc, self.v_100),
(v, x, self.v_10, self.x_csc)]:
f_a = theano.function([x, y], theano.sparse.dot(x, y))
f_b = lambda x, y: x * y
utt.assert_allclose(f_a(x_v, y_v), f_b(x_v, y_v))
# Test infer_shape
self._compile_and_check([x, y], [theano.sparse.dot(x, y)],
[x_v, y_v],
(Dot, Usmm, UsmmCscDense))
示例14: test_int32_dtype
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_int32_dtype(self):
# Reported on the theano-user mailing-list:
# https://groups.google.com/d/msg/theano-users/MT9ui8LtTsY/rwatwEF9zWAJ
size = 9
intX = 'int32'
C = tensor.matrix('C', dtype=intX)
I = tensor.matrix('I', dtype=intX)
fI = I.flatten()
data = tensor.ones_like(fI)
indptr = tensor.arange(data.shape[0] + 1, dtype='int32')
m1 = sparse.CSR(data, fI, indptr, (8, size))
m2 = sparse.dot(m1, C)
y = m2.reshape(shape=(2, 4, 9), ndim=3)
f = theano.function(inputs=[I, C], outputs=y)
i = numpy.asarray([[4, 3, 7, 7], [2, 8, 4, 5]], dtype=intX)
a = numpy.asarray(numpy.random.randint(0, 100, (size, size)),
dtype=intX)
f(i, a)
示例15: test_sparse_shared_memory
# 需要导入模块: import theano [as 别名]
# 或者: from theano import sparse [as 别名]
def test_sparse_shared_memory():
# Note : There are no inplace ops on sparse matrix yet. If one is
# someday implemented, we could test it here.
a = random_lil((3, 4), 'float32', 3).tocsr()
m1 = random_lil((4, 4), 'float32', 3).tocsr()
m2 = random_lil((4, 4), 'float32', 3).tocsr()
x = SparseType('csr', dtype='float32')()
y = SparseType('csr', dtype='float32')()
sdot = theano.sparse.structured_dot
z = sdot(x * 3, m1) + sdot(y * 2, m2)
f = theano.function([theano.In(x, mutable=True),
theano.In(y, mutable=True)], z, mode='FAST_RUN')
def f_(x, y, m1=m1, m2=m2):
return ((x * 3) * m1) + ((y * 2) * m2)
assert SparseType.may_share_memory(a, a) # This is trivial
result = f(a, a)
result_ = f_(a, a)
assert (result_.todense() == result.todense()).all()