本文整理汇总了Python中theano.Op方法的典型用法代码示例。如果您正苦于以下问题:Python theano.Op方法的具体用法?Python theano.Op怎么用?Python theano.Op使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类theano
的用法示例。
在下文中一共展示了theano.Op方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: local_gpu_elemwise_careduce
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def local_gpu_elemwise_careduce(node):
"""
Merge some GpuCAReduceCuda and GPUElemwise.
"""
if (isinstance(node.op, GpuCAReduceCuda) and
node.op.pre_scalar_op is None and
node.inputs[0].owner and
isinstance(node.inputs[0].owner.op, GpuElemwise) and
# The Op support all scalar with 1 inputs. We don't
# automatically add more case, as some like trigonometic
# operation with some reduction pattern will probably results
# in slow down.
isinstance(node.inputs[0].owner.op.scalar_op, scalar.basic.Sqr)):
op = node.op
inp = node.inputs[0].owner.inputs[0]
return [GpuCAReduceCuda(scalar_op=op.scalar_op,
axis=op.axis,
reduce_mask=op.reduce_mask,
pre_scalar_op=scalar.basic.sqr)(inp)]
示例2: in_shape
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def in_shape(self, output_shape):
out_dims = list(output_shape[:self.n_dims_before])
num_strides = []
# in the inverse case we don't worry about borders:
# they either have been filled with zeros, or have been cropped
for i, ds in enumerate(self.dims_neighbourhoods):
# the number of strides performed by NeighFromImg is
# directly given by this shape
num_strides.append(output_shape[self.n_dims_before + i])
# our Op's output image must be at least this wide
at_least_width = num_strides[i] * self.strides[i]
# ... which gives us this number of neighbourhoods
num_neigh = at_least_width // ds
if at_least_width % ds != 0:
num_neigh += 1
# making the final Op's output dimension this wide
out_dims.append(num_neigh * ds)
return out_dims, num_strides
示例3: _py_assignment
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def _py_assignment(self):
# TODO : need description for method and return
input_idx = "".join(["outer_idx_%d," % (i,)
for i in xrange(self.n_dims_before)])
input_idx += "".join(["dim_%d_offset+neigh_idx_%d," %
(i, i) for i in xrange(len(self.strides))])
out_idx = "".join(
["outer_idx_%d," % (i,) for i in xrange(self.n_dims_before)] +
["stride_idx_%d," % (i,) for i in xrange(len(self.strides))])
out_idx += self._py_flattened_idx()
# return_val = '\t' * (self.n_dims_before + len(self.strides)*2)
# return_val += "print "+input_idx+"'\\n',"+out_idx+"\n"
return_val = '\t' * (self.n_dims_before + len(self.strides) * 2)
if self.inverse:
# remember z and x are inversed:
# z is the Op's output, but has input_shape
# x is the Op's input, but has out_shape
return_val += "z[0][%s] = x[%s]\n" % (input_idx, out_idx)
else:
return_val += "z[0][%s] = x[%s]\n" % (out_idx, input_idx)
return return_val
示例4: _py_assignment
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def _py_assignment(self):
input_idx = "".join(["outer_idx_%d," % (i,)
for i in xrange(self.n_dims_before)])
input_idx += "".join(["dim_%d_offset+neigh_idx_%d," %
(i, i) for i in xrange(len(self.strides))])
out_idx = "".join(
["outer_idx_%d," % (i,) for i in xrange(self.n_dims_before)] +
["stride_idx_%d," % (i,) for i in xrange(len(self.strides))])
out_idx += self._py_flattened_idx()
# return_val = '\t' * (self.n_dims_before + len(self.strides)*2)
# return_val += "print "+input_idx+"'\\n',"+out_idx+"\n"
return_val = '\t' * (self.n_dims_before + len(self.strides) * 2)
if self.inverse:
# remember z and x are inversed:
# z is the Op's output, but has input_shape
# x is the Op's input, but has out_shape
return_val += "z[0][%s] = x[%s]\n" % (input_idx, out_idx)
else:
return_val += "z[0][%s] = x[%s]\n" % (out_idx, input_idx)
return return_val
示例5: __init__
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def __init__(self, inputDim=None, outputDim=None, activation=None):
"""
:type inputDim: tuple of [int]
:param inputDim: dimensionality of input
:type outputDim: tuple of [int]
:param outputDim: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden layer
"""
super(NonlinearityLayerParams, self).__init__(inputDim, outputDim)
self._outputDim = self._inputDim
self._activation = activation
示例6: __init__
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def __init__(self, inputDim=None, outputDim=None, activation=None, hasBias=True, init_method=None):
"""
:type inputDim: tuple of [int]
:param inputDim: dimensionality of input
:type outputDim: tuple of [int]
:param outputDim: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden layer
"""
super(HiddenLayerParams, self).__init__(inputDim, outputDim)
self._activation = activation
self._hasbias = hasBias
self._init_method = init_method
示例7: infer_shape
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def infer_shape(self, node, input_shapes):
"""Return a list of output shapes based on ``input_shapes``.
This method is optional. It allows to compute the shape of the
output without having to evaluate.
Parameters
----------
node : `theano.gof.graph.Apply`
The node of this Op in the computation graph.
input_shapes : 1-element list of `theano.compile.ops.Shape`
Symbolic shape of the input.
Returns
-------
output_shapes : 1-element list of tuples
Fixed shape of the output determined by `odl_op`.
"""
if isinstance(self.operator, Functional):
return [()]
else:
# Need to convert to native to avoid error in Theano from
# future.int
return [tuple(native(si) for si in self.operator.range.shape)]
示例8: __init__
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def __init__(self, rng, input, n_in, n_out, activation=T.tanh, name_prefix=''):
"""
Typical hidden layer of a MLP: units are fully-connected and have
sigmoidal activation function. Weight matrix W is of shape (n_in,n_out)
and the bias vector b is of shape (n_out,).
NOTE : The nonlinearity used here is tanh
Hidden unit activation is given by: tanh(dot(input,W) + b)
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden
layer
"""
self.input = input
# `W` is initialized with `W_values` which is uniformely sampled
# from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden)
# the output of uniform if converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
W_values = numpy.asarray( rng.uniform( \
low=-numpy.sqrt(6./(n_in+n_out)), \
high=numpy.sqrt(6./(n_in+n_out)), \
size=(n_in, n_out)), dtype=theano.config.floatX)
self.W = theano.shared(value=W_values, name=name_prefix+'W')
self.output = T.dot(input, self.W)
# parameters of the model
self.params = [self.W]
示例9: dnn_pool
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def dnn_pool(img, ws, stride=(1, 1), mode='max', pad=(0, 0)):
"""
GPU pooling using cuDNN from NVIDIA.
The memory layout to use is 'bc01', that is 'batch', 'channel',
'first dim', 'second dim' in that order.
`ws`, `stride` and `pad` must have the same length.
Parameters
----------
img
Images to do the pooling over.
ws : tuple
Subsampling window size.
stride : tuple
Subsampling stride (default: (1, 1)).
mode : {'max', 'average_inc_pad', 'average_exc_pad'}
pad : tuple
(padX, padY) or (padX, padY, padZ)
default: (0, 0)
.. warning:: The cuDNN library only works with GPU that have a compute
capability of 3.0 or higer. This means that older GPU will not
work with this Op.
Notes
-----
This Op implements the ignore_border=True of max_pool_2d.
"""
img = gpu_contiguous(img)
return GpuDnnPool(mode=mode)(img, ws, stride, pad)
示例10: grad
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def grad(self, inputs, output_grads):
return [output_grads[0] * inputs[1], output_grads[0] * inputs[0]]
# 2. Op returns x + y and x - y
示例11: dnn_pool
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def dnn_pool(img, ws, stride=(1, 1), mode='max', pad=(0, 0)):
"""
GPU pooling using cuDNN from NVIDIA.
The memory layout to use is 'bc01', that is 'batch', 'channel',
'first dim', 'second dim' in that order.
`ws`, `stride` and `pad` must have the same length.
Parameters
----------
img
Images to do the pooling over.
ws : tuple
Subsampling window size.
stride : tuple
Subsampling stride (default: (1, 1)).
mode : {'max', 'average_inc_pad', 'average_exc_pad'}
pad : tuple
(padX, padY) or (padX, padY, padZ)
default: (0, 0)
.. warning:: The cuDNN library only works with GPU that have a compute
capability of 3.0 or higer. This means that older GPU will not
work with this Op.
Notes
-----
This Op implements the ignore_border=True of max_pool_2d.
"""
img = gpu_contiguous(img)
desc = GpuDnnPoolDesc(ws=ws, stride=stride, mode=mode, pad=pad)()
return GpuDnnPool()(img, desc)
示例12: __init__
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def __init__(self, inputDim=None, outputDim=None, activation=None):
"""
:type inputDim: tuple of [int]
:param inputDim: dimensionality of input
:type outputDim: tuple of [int]
:param outputDim: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden layer
"""
super(HiddenLayerParams, self).__init__(inputDim, outputDim)
self._activation = activation
示例13: make_node
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def make_node(self, inp):
if not cusolver_available:
raise RuntimeError('CUSOLVER is not available and '
'GpuLU Op can not be constructed.')
if skcuda.__version__ <= '0.5.1':
warnings.warn('The GpuLU op requires scikit-cuda > 0.5.1 to work with CUDA 8')
if not pygpu_available:
raise RuntimeError('Missing pygpu or triu/tril functions.'
'Install or update libgpuarray.')
context_name = infer_context_name(inp)
inp = as_gpuarray_variable(inp, context_name)
inp = gpu_contiguous(inp)
# this op can only operate on float32 matrices
# because of current implementation of triu/tril.
# TODO: support float64
assert inp.ndim == 2
assert inp.dtype == 'float32'
# outputs LU in a single matrix, and a pivots array
pivots_type = GpuArrayType('int32',
broadcastable=inp[0].broadcastable,
context_name=context_name)()
return theano.Apply(self, [inp], [inp.type(), pivots_type])
示例14: _add_to_cache
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def _add_to_cache(self, module, key, module_hash):
"""
This function expects the compile lock to be held.
"""
name = module.__file__
_logger.debug("Adding module to cache %s %s",
key, name)
# Changing the hash of the key is not allowed during
# compilation. That is the only cause found that makes
# the following assert fail.
assert key not in self.entry_from_key
location = os.path.dirname(name)
key_pkl = os.path.join(location, 'key.pkl')
assert not os.path.exists(key_pkl)
key_data = KeyData(
keys=set([key]),
module_hash=module_hash,
key_pkl=key_pkl,
entry=name)
key_broken = False
if key[0]:
try:
key_data.save_pkl()
except pickle.PicklingError:
key_broken = True
key_data.remove_key(key)
key_data.save_pkl()
if not key_broken and self.check_for_broken_eq:
self.check_key(key, key_pkl)
self.loaded_key_pkl.add(key_pkl)
elif config.cmodule.warn_no_version:
key_flat = flatten(key)
ops = [k for k in key_flat if isinstance(k, theano.Op)]
_logger.warning("not all the"
" following op(s) implement"
" c_code_cache_version(). This makes them"
" recompiled for each process." + str(ops))
self._update_mappings(key, key_data, module.__file__, not key_broken)
return key_data
示例15: op_lifter
# 需要导入模块: import theano [as 别名]
# 或者: from theano import Op [as 别名]
def op_lifter(OP, cuda_only=False):
"""
OP(..., host_from_gpu(), ...) -> host_from_gpu(GpuOP(...))
gpu_from_host(OP(inp0, ...)) -> GpuOP(inp0, ...)
"""
def f(maker):
def local_opt(node):
if type(node.op) in OP:
# Either one of our inputs is on the gpu or
# all of our clients are on the gpu
replace = False
# TODO: Maybe set context_name with infer_context_name()?
context_name = None
# We replace if any input is a host_from_gpu
for i in node.inputs:
if i.owner and i.owner.op == host_from_gpu:
context_name = i.owner.inputs[0].type.context_name
replace = True
break
if not replace:
# We replace if *all* clients are on the GPU
clients = [c for o in node.outputs for c in o.clients]
replace = len(clients) != 0
for c, idx in clients:
if (c == 'output' or
not isinstance(c.op, GpuFromHost)):
replace = False
# TODO: check that the clients want the same context?
if replace:
# All clients are GpuFromHost and we have at least one
context_name = clients[0][0].op.context_name
# Check if we should replace
if (not replace or
(cuda_only and
get_context(context_name).kind != 'cuda')):
return False
# tag the inputs with the context in case
# the context was derived from the outputs
for i in node.inputs:
i.tag.context_name = context_name
new_op = maker(node, context_name)
# This is needed as sometimes new_op inherits from OP.
if new_op and new_op != node.op:
if isinstance(new_op, theano.Op):
return [safe_to_cpu(o) for o in
new_op(*node.inputs, return_list=True)]
elif isinstance(new_op, (tuple, list)):
return [safe_to_cpu(o) for o in new_op]
else: # suppose it is a variable on the GPU
return [host_from_gpu(new_op)]
return False
local_opt.__name__ = maker.__name__
return local_optimizer(OP)(local_opt)
return f