当前位置: 首页>>代码示例>>Python>>正文


Python tflib.param方法代码示例

本文整理汇总了Python中tflib.param方法的典型用法代码示例。如果您正苦于以下问题:Python tflib.param方法的具体用法?Python tflib.param怎么用?Python tflib.param使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tflib的用法示例。


在下文中一共展示了tflib.param方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Layernorm

# 需要导入模块: import tflib [as 别名]
# 或者: from tflib import param [as 别名]
def Layernorm(name, norm_axes, inputs):
    mean, var = tf.nn.moments(inputs, norm_axes, keep_dims=True)

    # Assume the 'neurons' axis is the first of norm_axes. This is the case for fully-connected and BCHW conv layers.
    n_neurons = inputs.get_shape().as_list()[norm_axes[0]]

    offset = lib.param(name+'.offset', np.zeros(n_neurons, dtype='float32'))
    scale = lib.param(name+'.scale', np.ones(n_neurons, dtype='float32'))

    # Add broadcasting dims to offset and scale (e.g. BCHW conv data)
    offset = tf.reshape(offset, [-1] + [1 for i in xrange(len(norm_axes)-1)])
    scale = tf.reshape(scale, [-1] + [1 for i in xrange(len(norm_axes)-1)])

    result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-5)

    return result 
开发者ID:igul222,项目名称:improved_wgan_training,代码行数:18,代码来源:layernorm.py

示例2: Layernorm

# 需要导入模块: import tflib [as 别名]
# 或者: from tflib import param [as 别名]
def Layernorm(name, norm_axes, inputs):
    mean, var = tf.nn.moments(inputs, norm_axes, keep_dims=True)

    # Assume the 'neurons' axis is the first of norm_axes. This is the case for fully-connected and BCHW conv layers.
    n_neurons = inputs.get_shape().as_list()[norm_axes[0]]

    offset = lib.param(name+'.offset', np.zeros(n_neurons, dtype='float32'))
    #offset = np.zeros(n_neurons, dtype='float32')
    scale = lib.param(name+'.scale', np.ones(n_neurons, dtype='float32'))
    #scale = np.ones(n_neurons, dtype='float32')
    # Add broadcasting dims to offset and scale (e.g. BCHW conv data)
    offset = tf.reshape(offset, [-1] + [1 for i in range(len(norm_axes)-1)])
    scale = tf.reshape(scale, [-1] + [1 for i in range(len(norm_axes)-1)])

    result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-5)

    return result 
开发者ID:WuChenshen,项目名称:MeRGAN,代码行数:19,代码来源:layernorm.py

示例3: Batchnorm

# 需要导入模块: import tflib [as 别名]
# 或者: from tflib import param [as 别名]
def Batchnorm(name, axes, inputs, is_training=None, stats_iter=None, update_moving_stats=True, fused=True, labels=None, n_labels=None):
    """conditional batchnorm (dumoulin et al 2016) for BCHW conv filtermaps"""
    if axes != [0,2,3]:
        raise Exception('unsupported')
    #pdb.set_trace()
    mean, var = tf.nn.moments(inputs, axes, keep_dims=True)
    shape = mean.get_shape().as_list() # shape is [1,n,1,1]
    offset_m = lib.param(name+'.offset', np.zeros([n_labels,shape[1]], dtype='float32'))
    scale_m = lib.param(name+'.scale', np.ones([n_labels,shape[1]], dtype='float32'))
    moving_mean_m = lib.param(name+'.moving_mean', np.zeros([n_labels,shape[1]], dtype='float32'), trainable=False)
    moving_variance_m = lib.param(name+'.moving_variance', np.ones([n_labels,shape[1]], dtype='float32'), trainable=False)

    offset = tf.nn.embedding_lookup(offset_m, labels)
    scale = tf.nn.embedding_lookup(scale_m, labels)
    result = tf.nn.batch_normalization(inputs, mean, var, offset[:,:,None,None], scale[:,:,None,None], 1e-5)
    return result 
开发者ID:WuChenshen,项目名称:MeRGAN,代码行数:18,代码来源:cond_batchnorm.py

示例4: Layernorm

# 需要导入模块: import tflib [as 别名]
# 或者: from tflib import param [as 别名]
def Layernorm(name, norm_axes, inputs):
    mean, var = tf.nn.moments(inputs, norm_axes, keep_dims=True)

    # Assume the 'neurons' axis is the first of norm_axes. This is the case for fully-connected and BCHW conv layers.
    n_neurons = inputs.get_shape().as_list()[norm_axes[0]]

    offset = lib.param(name+'.offset', np.zeros(n_neurons, dtype='float32'))
    scale = lib.param(name+'.scale', np.ones(n_neurons, dtype='float32'))

    # Add broadcasting dims to offset and scale (e.g. BCHW conv data)
    offset = tf.reshape(offset, [-1] + [1 for i in xrange(len(norm_axes)-1)])
    scale = tf.reshape(scale, [-1] + [1 for i in xrange(len(norm_axes)-1)])

    result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-5)

    return result

# not working yet 
开发者ID:alex-sage,项目名称:logo-gen,代码行数:20,代码来源:layernorm.py

示例5: Layernorm_cond

# 需要导入模块: import tflib [as 别名]
# 或者: from tflib import param [as 别名]
def Layernorm_cond(name, norm_axes, inputs, labels, n_labels):
    mean, var = tf.nn.moments(inputs, norm_axes, keep_dims=True)

    # Assume the 'neurons' axis is the first of norm_axes. This is the case for fully-connected and BCHW conv layers.
    n_neurons = inputs.get_shape().as_list()[norm_axes[0]]

    offset_m = lib.param(name+'.offset', np.zeros([n_labels,n_neurons], dtype='float32'))
    scale_m = lib.param(name+'.scale', np.ones([n_labels,n_neurons], dtype='float32'))
    offset = tf.nn.embedding_lookup(offset_m, labels)
    scale = tf.nn.embedding_lookup(scale_m, labels)

    # Add broadcasting dims to offset and scale (e.g. BCHW conv data)
    offset = tf.reshape(offset, [-1] + [1 for i in xrange(len(norm_axes)-1)])
    scale = tf.reshape(scale, [-1] + [1 for i in xrange(len(norm_axes)-1)])

    result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-5)

    return result 
开发者ID:alex-sage,项目名称:logo-gen,代码行数:20,代码来源:layernorm.py

示例6: Layernorm

# 需要导入模块: import tflib [as 别名]
# 或者: from tflib import param [as 别名]
def Layernorm(name, norm_axes, inputs):
    mean, var = tf.nn.moments(inputs, norm_axes, keep_dims=True)

    # Assume the 'neurons' axis is the first of norm_axes. This is the case for fully-connected and BCHW conv layers.
    n_neurons = inputs.get_shape().as_list()[norm_axes[0]]

    offset = lib.param(name+'.offset', np.zeros(n_neurons, dtype='float32'))
    scale = lib.param(name+'.scale', np.ones(n_neurons, dtype='float32'))

    # Add broadcasting dims to offset and scale (e.g. BCHW conv data)
    offset = tf.reshape(offset, [-1] + [1 for i in range(len(norm_axes)-1)])
    scale = tf.reshape(scale, [-1] + [1 for i in range(len(norm_axes)-1)])

    result = tf.nn.batch_normalization(inputs, mean, var, offset, scale, 1e-5)

    return result 
开发者ID:YuguangTong,项目名称:improved_wgan_training,代码行数:18,代码来源:layernorm.py

示例7: Batchnorm

# 需要导入模块: import tflib [as 别名]
# 或者: from tflib import param [as 别名]
def Batchnorm(name, axes, inputs, is_training=None, stats_iter=None, update_moving_stats=True, fused=True, labels=None, n_labels=None):
    """conditional batchnorm (dumoulin et al 2016) for BCHW conv filtermaps"""
    if axes != [0,2,3]:
        raise Exception('unsupported')
    mean, var = tf.nn.moments(inputs, axes, keep_dims=True)
    shape = mean.get_shape().as_list() # shape is [1,n,1,1]
    offset_m = lib.param(name+'.offset', np.zeros([n_labels,shape[1]], dtype='float32'))
    scale_m = lib.param(name+'.scale', np.ones([n_labels,shape[1]], dtype='float32'))
    offset = tf.nn.embedding_lookup(offset_m, labels)
    scale = tf.nn.embedding_lookup(scale_m, labels)
    result = tf.nn.batch_normalization(inputs, mean, var, offset[:,:,None,None], scale[:,:,None,None], 1e-5)
    return result 
开发者ID:igul222,项目名称:improved_wgan_training,代码行数:14,代码来源:cond_batchnorm.py


注:本文中的tflib.param方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。