当前位置: 首页>>代码示例>>Python>>正文


Python tflearn.lstm方法代码示例

本文整理汇总了Python中tflearn.lstm方法的典型用法代码示例。如果您正苦于以下问题:Python tflearn.lstm方法的具体用法?Python tflearn.lstm怎么用?Python tflearn.lstm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tflearn的用法示例。


在下文中一共展示了tflearn.lstm方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_network

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def get_network(frames, input_size, num_classes):
    """Create our LSTM"""
    net = tflearn.input_data(shape=[None, frames, input_size])
    net = tflearn.lstm(net, 128, dropout=0.8, return_seq=True)
    net = tflearn.lstm(net, 128)
    net = tflearn.fully_connected(net, num_classes, activation='softmax')
    net = tflearn.regression(net, optimizer='adam',
                             loss='categorical_crossentropy', name="output1")
    return net 
开发者ID:hthuwal,项目名称:sign-language-gesture-recognition,代码行数:11,代码来源:rnn_utils.py

示例2: get_network_deep

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def get_network_deep(frames, input_size, num_classes):
    """Create a deeper LSTM"""
    net = tflearn.input_data(shape=[None, frames, input_size])
    net = tflearn.lstm(net, 64, dropout=0.2, return_seq=True)
    net = tflearn.lstm(net, 64, dropout=0.2, return_seq=True)
    net = tflearn.lstm(net, 64, dropout=0.2)
    net = tflearn.fully_connected(net, num_classes, activation='softmax')
    net = tflearn.regression(net, optimizer='adam',
                             loss='categorical_crossentropy', name="output1")
    return net 
开发者ID:hthuwal,项目名称:sign-language-gesture-recognition,代码行数:12,代码来源:rnn_utils.py

示例3: get_network_wide

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def get_network_wide(frames, input_size, num_classes):
    """Create a wider LSTM"""
    net = tflearn.input_data(shape=[None, frames, input_size])
    net = tflearn.lstm(net, 256, dropout=0.2)
    net = tflearn.fully_connected(net, num_classes, activation='softmax')
    net = tflearn.regression(net, optimizer='adam',
                             loss='categorical_crossentropy', name='output1')
    return net 
开发者ID:hthuwal,项目名称:sign-language-gesture-recognition,代码行数:10,代码来源:rnn_utils.py

示例4: get_network_wider

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def get_network_wider(frames, input_size, num_classes):
    """Create a wider LSTM"""
    net = tflearn.input_data(shape=[None, frames, input_size])
    net = tflearn.lstm(net, 512, dropout=0.2)
    net = tflearn.fully_connected(net, num_classes, activation='softmax')
    net = tflearn.regression(net, optimizer='adam',
                             loss='categorical_crossentropy', name='output1')
    return net 
开发者ID:hthuwal,项目名称:sign-language-gesture-recognition,代码行数:10,代码来源:rnn_utils.py

示例5: sentnet_LSTM_gray

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def sentnet_LSTM_gray(width, height, frame_count, lr, output=9):
    network = input_data(shape=[None, width, height], name='input')
    #network = tflearn.input_data(shape=[None, 28, 28], name='input')
    network = tflearn.lstm(network, 128, return_seq=True)
    network = tflearn.lstm(network, 128)
    network = tflearn.fully_connected(network, 9, activation='softmax')
    network = tflearn.regression(network, optimizer='adam',
    loss='categorical_crossentropy', name="output1")

    model = tflearn.DNN(network, checkpoint_path='model_lstm',
                        max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')

    return model 
开发者ID:Sentdex,项目名称:pygta5,代码行数:15,代码来源:models.py

示例6: _create_model

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def _create_model(self):
        reset_default_graph()
        net = input_data([None, SEQUENCE_LEN])
        net = embedding(net, input_dim=len(self._vocab.vocabulary_),
                        output_dim=WORD_FEATURE_DIM)
        net = lstm(net, DOC_FEATURE_DIM, dropout=0.8)
        net = fully_connected(net, 2, activation='softmax')
        net = regression(net, optimizer='adam', learning_rate=0.001,
                         loss='categorical_crossentropy')
        return DNN(net) 
开发者ID:xfgryujk,项目名称:TaobaoAnalysis,代码行数:12,代码来源:sentiment.py

示例7: test_recurrent_layers

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def test_recurrent_layers(self):

        X = [[1, 3, 5, 7], [2, 4, 8, 10], [1, 5, 9, 11], [2, 6, 8, 0]]
        Y = [[0., 1.], [1., 0.], [0., 1.], [1., 0.]]

        with tf.Graph().as_default():
            g = tflearn.input_data(shape=[None, 4])
            g = tflearn.embedding(g, input_dim=12, output_dim=4)
            g = tflearn.lstm(g, 6)
            g = tflearn.fully_connected(g, 2, activation='softmax')
            g = tflearn.regression(g, optimizer='sgd', learning_rate=1.)

            m = tflearn.DNN(g)
            m.fit(X, Y, n_epoch=300, snapshot_epoch=False)
            self.assertGreater(m.predict([[5, 9, 11, 1]])[0][1], 0.9) 
开发者ID:limbo018,项目名称:FRU,代码行数:17,代码来源:test_layers.py

示例8: test_sequencegenerator

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def test_sequencegenerator(self):

        with tf.Graph().as_default():
            text = "123456789101234567891012345678910123456789101234567891012345678910"
            maxlen = 5

            X, Y, char_idx = \
                tflearn.data_utils.string_to_semi_redundant_sequences(text, seq_maxlen=maxlen, redun_step=3)

            g = tflearn.input_data(shape=[None, maxlen, len(char_idx)])
            g = tflearn.lstm(g, 32)
            g = tflearn.dropout(g, 0.5)
            g = tflearn.fully_connected(g, len(char_idx), activation='softmax')
            g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
                                   learning_rate=0.1)

            m = tflearn.SequenceGenerator(g, dictionary=char_idx,
                                          seq_maxlen=maxlen,
                                          clip_gradients=5.0)
            m.fit(X, Y, validation_set=0.1, n_epoch=100, snapshot_epoch=False)
            res = m.generate(10, temperature=.5, seq_seed="12345")
            #self.assertEqual(res, "123456789101234", "SequenceGenerator test failed! Generated sequence: " + res + " expected '123456789101234'")

            # Testing save method
            m.save("test_seqgen.tflearn")
            self.assertTrue(os.path.exists("test_seqgen.tflearn.index"))

            # Testing load method
            m.load("test_seqgen.tflearn")
            res = m.generate(10, temperature=.5, seq_seed="12345")
            # TODO: Fix test
            #self.assertEqual(res, "123456789101234", "SequenceGenerator test failed after loading model! Generated sequence: " + res + " expected '123456789101234'") 
开发者ID:limbo018,项目名称:FRU,代码行数:34,代码来源:test_models.py

示例9: model

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def model(self, feed_previous=False):
        # 通过输入的XY生成encoder_inputs和带GO头的decoder_inputs
        input_data = tflearn.input_data(shape=[None, self.max_seq_len*2, self.word_vec_dim], dtype=tf.float32, name = "XY")
        encoder_inputs = tf.slice(input_data, [0, 0, 0], [-1, self.max_seq_len, self.word_vec_dim], name="enc_in")
        decoder_inputs_tmp = tf.slice(input_data, [0, self.max_seq_len, 0], [-1, self.max_seq_len-1, self.word_vec_dim], name="dec_in_tmp")
        go_inputs = tf.ones_like(decoder_inputs_tmp)
        go_inputs = tf.slice(go_inputs, [0, 0, 0], [-1, 1, self.word_vec_dim])
        decoder_inputs = tf.concat(1, [go_inputs, decoder_inputs_tmp], name="dec_in")

        # 编码器
        # 把encoder_inputs交给编码器,返回一个输出(预测序列的第一个值)和一个状态(传给解码器)
        (encoder_output_tensor, states) = tflearn.lstm(encoder_inputs, self.word_vec_dim, return_state=True, scope='encoder_lstm')
        encoder_output_sequence = tf.pack([encoder_output_tensor], axis=1)

        # 解码器
        # 预测过程用前一个时间序的输出作为下一个时间序的输入
        # 先用编码器的最后一个输出作为第一个输入
        if feed_previous:
            first_dec_input = go_inputs
        else:
            first_dec_input = tf.slice(decoder_inputs, [0, 0, 0], [-1, 1, self.word_vec_dim])
        decoder_output_tensor = tflearn.lstm(first_dec_input, self.word_vec_dim, initial_state=states, return_seq=False, reuse=False, scope='decoder_lstm')
        decoder_output_sequence_single = tf.pack([decoder_output_tensor], axis=1)
        decoder_output_sequence_list = [decoder_output_tensor]
        # 再用解码器的输出作为下一个时序的输入
        for i in range(self.max_seq_len-1):
            if feed_previous:
                next_dec_input = decoder_output_sequence_single
            else:
                next_dec_input = tf.slice(decoder_inputs, [0, i+1, 0], [-1, 1, self.word_vec_dim])
            decoder_output_tensor = tflearn.lstm(next_dec_input, self.word_vec_dim, return_seq=False, reuse=True, scope='decoder_lstm')
            decoder_output_sequence_single = tf.pack([decoder_output_tensor], axis=1)
            decoder_output_sequence_list.append(decoder_output_tensor)

        decoder_output_sequence = tf.pack(decoder_output_sequence_list, axis=1)
        real_output_sequence = tf.concat(1, [encoder_output_sequence, decoder_output_sequence])

        net = tflearn.regression(real_output_sequence, optimizer='sgd', learning_rate=0.1, loss='mean_square')
        model = tflearn.DNN(net)
        return model 
开发者ID:warmheartli,项目名称:ChatBotCourse,代码行数:42,代码来源:my_seq2seq.py

示例10: main

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def main():
    load_vectors("./vectors.bin")
    init_seq()
    xlist = []
    ylist = []
    test_X = None
    #for i in range(len(seq)-100):
    for i in range(1000):
        sequence = seq[i:i+20]
        xlist.append(sequence)
        ylist.append(seq[i+20])
        if test_X is None:
            test_X = np.array(sequence)
            (match_word, max_cos) = vector2word(seq[i+20])
            print "right answer=", match_word, max_cos

    X = np.array(xlist)
    Y = np.array(ylist)
    net = tflearn.input_data([None, 20, 200])
    net = tflearn.lstm(net, 200)
    net = tflearn.fully_connected(net, 200, activation='linear')
    net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1,
                                     loss='mean_square')
    model = tflearn.DNN(net)
    model.fit(X, Y, n_epoch=1000, batch_size=1,snapshot_epoch=False,show_metric=True)
    model.save("model")
    predict = model.predict([test_X])
    #print predict
    #for v in test_X:
    #    print vector2word(v)
    (match_word, max_cos) = vector2word(predict[0])
    print "predict=", match_word, max_cos 
开发者ID:warmheartli,项目名称:ChatBotCourse,代码行数:34,代码来源:one_lstm_sequence_generate.py

示例11: test_sequencegenerator_words

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import lstm [as 别名]
def test_sequencegenerator_words(self):

        with tf.Graph().as_default():
            text = ["hello","world"]*100
            word_idx = {"hello": 0, "world": 1}
            maxlen = 2

            vec = [x for x in map(word_idx.get, text) if x is not None]

            sequences = []
            next_words = []
            for i in range(0, len(vec) - maxlen, 3):
                sequences.append(vec[i: i + maxlen])
                next_words.append(vec[i + maxlen])

            X = np.zeros((len(sequences), maxlen, len(word_idx)), dtype=np.bool)
            Y = np.zeros((len(sequences), len(word_idx)), dtype=np.bool)
            for i, seq in enumerate(sequences):
                for t, idx in enumerate(seq):
                    X[i, t, idx] = True
                    Y[i, next_words[i]] = True

            g = tflearn.input_data(shape=[None, maxlen, len(word_idx)])
            g = tflearn.lstm(g, 32)
            g = tflearn.dropout(g, 0.5)
            g = tflearn.fully_connected(g, len(word_idx), activation='softmax')
            g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
                                   learning_rate=0.1)

            m = tflearn.SequenceGenerator(g, dictionary=word_idx,
                                          seq_maxlen=maxlen,
                                          clip_gradients=5.0)
            m.fit(X, Y, validation_set=0.1, n_epoch=100, snapshot_epoch=False)
            res = m.generate(4, temperature=.5, seq_seed=["hello","world"])
            res_str = " ".join(res[-2:])
            self.assertEqual(res_str, "hello world", "SequenceGenerator (word level) test failed! Generated sequence: " + res_str + " expected 'hello world'")

            # Testing save method
            m.save("test_seqgen_word.tflearn")
            self.assertTrue(os.path.exists("test_seqgen_word.tflearn.index"))

            # Testing load method
            m.load("test_seqgen_word.tflearn")
            res = m.generate(4, temperature=.5, seq_seed=["hello","world"])
            res_str = " ".join(res[-2:])
            self.assertEqual(res_str, "hello world", "Reloaded SequenceGenerator (word level) test failed! Generated sequence: " + res_str + " expected 'hello world'") 
开发者ID:limbo018,项目名称:FRU,代码行数:48,代码来源:test_models.py


注:本文中的tflearn.lstm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。