本文整理汇总了Python中tflearn.layers.normalization.local_response_normalization方法的典型用法代码示例。如果您正苦于以下问题:Python normalization.local_response_normalization方法的具体用法?Python normalization.local_response_normalization怎么用?Python normalization.local_response_normalization使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tflearn.layers.normalization
的用法示例。
在下文中一共展示了normalization.local_response_normalization方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: alexnet
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def alexnet(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log')
return model
示例2: alexnet2
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def alexnet2(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log')
return model
示例3: sentnet_color_2d
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def sentnet_color_2d(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
network = input_data(shape=[None, width, height, 3], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network,
max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例4: sentnet_color
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def sentnet_color(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
network = input_data(shape=[None, width, height,3, 1], name='input')
network = conv_3d(network, 96, 11, strides=4, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path=model_name,
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例5: sentnet_frames
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def sentnet_frames(width, height, frame_count, lr, output=9):
network = input_data(shape=[None, width, height,frame_count, 1], name='input')
network = conv_3d(network, 96, 11, strides=4, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例6: sentnet
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def sentnet(width, height, frame_count, lr, output=9):
network = input_data(shape=[None, width, height, frame_count, 1], name='input')
network = conv_3d(network, 96, 11, strides=4, activation='relu')
network = avg_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 256, 5, activation='relu')
network = avg_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
network = conv_3d(network, 256, 5, activation='relu')
network = avg_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = avg_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例7: alexnet2
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def alexnet2(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例8: sentnet_v0
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def sentnet_v0(width, height, frame_count, lr, output=9):
network = input_data(shape=[None, width, height, frame_count, 1], name='input')
network = conv_3d(network, 96, 11, strides=4, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, 3, activation='relu')
network = conv_3d(network, 384, 3, 3, activation='relu')
network = conv_3d(network, 256, 3, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例9: alexnet
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def alexnet(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例10: sentnet2
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def sentnet2(width, height, frame_count, lr, output=9):
network = input_data(shape=[None, width, height, frame_count, 1], name='input')
network = conv_3d(network, 96, 11, strides=4, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 3, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例11: alexnet
# 需要导入模块: from tflearn.layers import normalization [as 别名]
# 或者: from tflearn.layers.normalization import local_response_normalization [as 别名]
def alexnet(width, height, lr):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 3, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model