本文整理汇总了Python中tflearn.layers.conv.global_avg_pool方法的典型用法代码示例。如果您正苦于以下问题:Python conv.global_avg_pool方法的具体用法?Python conv.global_avg_pool怎么用?Python conv.global_avg_pool使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tflearn.layers.conv
的用法示例。
在下文中一共展示了conv.global_avg_pool方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: finalize_get_model
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import global_avg_pool [as 别名]
def finalize_get_model(net, flags):
net['gap'], curr = dup(global_avg_pool(net['conv_final'], name='gap'))
net['final'] = regression(curr,
optimizer='adam',
learning_rate=flags.lr,
batch_size=flags.bs,
loss='softmax_categorical_crossentropy',
name='target',
n_classes=flags.nc,
shuffle_batches=True)
model = tflearn.DNN(net['final'],
tensorboard_verbose=0,
tensorboard_dir=flags.logdir,
best_checkpoint_path=os.path.join(flags.logdir,
flags.run_id,
flags.run_id),
best_val_accuracy=flags.acc_save)
model.net_dict = net
model.flags = flags
return model
示例2: Global_Average_Pooling
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import global_avg_pool [as 别名]
def Global_Average_Pooling(x, stride=1):
"""
width = np.shape(x)[1]
height = np.shape(x)[2]
pool_size = [width, height]
return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride) # The stride value does not matter
It is global average pooling without tflearn
"""
return global_avg_pool(x, name='Global_avg_pooling')
# But maybe you need to install h5py and curses or not
示例3: Global_Average_Pooling
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import global_avg_pool [as 别名]
def Global_Average_Pooling(x):
return global_avg_pool(x, name='Global_avg_pooling')
示例4: Global_Average_Pooling
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import global_avg_pool [as 别名]
def Global_Average_Pooling(x,stride=1):
"""
width = np.shape(x)[1]
height = np.shape(x)[2]
pool_size = [width,height]
return tf.layer.average_pooling2d(inputs=x,pool_size=pool_size,strides=stride)
# The strdie value does not matter.It is global average pooling without tflearn
"""
return global_avg_pool(x,name='Global_avg_pooling')
# But maybe you need to install h5py and curses or not
示例5: squeeze_excitation_layer
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import global_avg_pool [as 别名]
def squeeze_excitation_layer(input_x, out_dim, middle):
squeeze = global_avg_pool(input_x)
excitation = tf.layers.dense(squeeze, use_bias=True, units=middle)
excitation = tf.nn.relu(excitation)
excitation = tf.layers.dense(excitation, use_bias=True, units=out_dim)
excitation = tf.nn.sigmoid(excitation)
excitation = tf.reshape(excitation, [-1, 1, 1, out_dim])
scale = input_x * excitation
return scale
示例6: selective_kernel_layer
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import global_avg_pool [as 别名]
def selective_kernel_layer(sk_conv1, sk_conv2, sk_conv3, middle, out_dim):
sum_u = sk_conv1 + sk_conv2 + sk_conv3
squeeze = global_avg_pool(sum_u)
squeeze = tf.reshape(squeeze, [-1, 1, 1, out_dim])
z = tf.layers.dense(squeeze, use_bias=True, units=middle)
z = tf.nn.relu(z)
a1 = tf.layers.dense(z, use_bias=True, units=out_dim)
a2 = tf.layers.dense(z, use_bias=True, units=out_dim)
a3 = tf.layers.dense(z, use_bias=True, units=out_dim)
before_softmax = tf.concat([a1, a2, a3], 1)
after_softmax = tf.nn.softmax(before_softmax, dim=1)
a1 = after_softmax[:, 0, :, :]
a1 = tf.reshape(a1, [-1, 1, 1, out_dim])
a2 = after_softmax[:, 1, :, :]
a2 = tf.reshape(a2, [-1, 1, 1, out_dim])
a3 = after_softmax[:, 2, :, :]
a3 = tf.reshape(a3, [-1, 1, 1, out_dim])
select_1 = sk_conv1 * a1
select_2 = sk_conv2 * a2
select_3 = sk_conv3 * a3
out = select_1 + select_2 + select_3
return out
示例7: construct_inceptionv4onfire
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import global_avg_pool [as 别名]
def construct_inceptionv4onfire(x,y, training=True, enable_batch_norm=True):
network = input_data(shape=[None, y, x, 3])
#stem of inceptionV4
conv1_3_3 = conv_2d(network,32,3,strides=2,activation='relu',name='conv1_3_3_s2',padding='valid')
conv2_3_3 = conv_2d(conv1_3_3,32,3,activation='relu',name='conv2_3_3')
conv3_3_3 = conv_2d(conv2_3_3,64,3,activation='relu',name='conv3_3_3')
b_conv_1_pool = max_pool_2d(conv3_3_3,kernel_size=3,strides=2,padding='valid',name='b_conv_1_pool')
if enable_batch_norm:
b_conv_1_pool = batch_normalization(b_conv_1_pool)
b_conv_1_conv = conv_2d(conv3_3_3,96,3,strides=2,padding='valid',activation='relu',name='b_conv_1_conv')
b_conv_1 = merge([b_conv_1_conv,b_conv_1_pool],mode='concat',axis=3)
b_conv4_1_1 = conv_2d(b_conv_1,64,1,activation='relu',name='conv4_3_3')
b_conv4_3_3 = conv_2d(b_conv4_1_1,96,3,padding='valid',activation='relu',name='conv5_3_3')
b_conv4_1_1_reduce = conv_2d(b_conv_1,64,1,activation='relu',name='b_conv4_1_1_reduce')
b_conv4_1_7 = conv_2d(b_conv4_1_1_reduce,64,[1,7],activation='relu',name='b_conv4_1_7')
b_conv4_7_1 = conv_2d(b_conv4_1_7,64,[7,1],activation='relu',name='b_conv4_7_1')
b_conv4_3_3_v = conv_2d(b_conv4_7_1,96,3,padding='valid',name='b_conv4_3_3_v')
b_conv_4 = merge([b_conv4_3_3_v, b_conv4_3_3],mode='concat',axis=3)
b_conv5_3_3 = conv_2d(b_conv_4,192,3,padding='valid',activation='relu',name='b_conv5_3_3',strides=2)
b_pool5_3_3 = max_pool_2d(b_conv_4,kernel_size=3,padding='valid',strides=2,name='b_pool5_3_3')
if enable_batch_norm:
b_pool5_3_3 = batch_normalization(b_pool5_3_3)
b_conv_5 = merge([b_conv5_3_3,b_pool5_3_3],mode='concat',axis=3)
net = b_conv_5
# inceptionV4 modules
net=inception_block_a(net)
net=inception_block_b(net)
net=inception_block_c(net)
pool5_7_7=global_avg_pool(net)
if(training):
pool5_7_7=dropout(pool5_7_7,0.4)
loss = fully_connected(pool5_7_7, 2,activation='softmax')
if(training):
network = regression(loss, optimizer='rmsprop',
loss='categorical_crossentropy',
learning_rate=0.001)
else:
network=loss
model = tflearn.DNN(network, checkpoint_path='inceptionv4onfire',
max_checkpoints=1, tensorboard_verbose=0)
return model
################################################################################