本文整理汇总了Python中tflearn.layers.conv.conv_2d方法的典型用法代码示例。如果您正苦于以下问题:Python conv.conv_2d方法的具体用法?Python conv.conv_2d怎么用?Python conv.conv_2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tflearn.layers.conv
的用法示例。
在下文中一共展示了conv.conv_2d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: inception_block_a
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def inception_block_a(input_a):
inception_a_conv1_1_1 = conv_2d(input_a,96,1,activation='relu',name='inception_a_conv1_1_1')
inception_a_conv1_3_3_reduce = conv_2d(input_a,64,1,activation='relu',name='inception_a_conv1_3_3_reduce')
inception_a_conv1_3_3 = conv_2d(inception_a_conv1_3_3_reduce,96,3,activation='relu',name='inception_a_conv1_3_3')
inception_a_conv2_3_3_reduce = conv_2d(input_a,64,1,activation='relu',name='inception_a_conv2_3_3_reduce')
inception_a_conv2_3_3_sym_1 = conv_2d(inception_a_conv2_3_3_reduce,96,3,activation='relu',name='inception_a_conv2_3_3')
inception_a_conv2_3_3 = conv_2d(inception_a_conv2_3_3_sym_1,96,3,activation='relu',name='inception_a_conv2_3_3')
inception_a_pool = avg_pool_2d(input_a,kernel_size=3,name='inception_a_pool',strides=1)
inception_a_pool_1_1 = conv_2d(inception_a_pool,96,1,activation='relu',name='inception_a_pool_1_1')
# merge inception_a
inception_a = merge([inception_a_conv1_1_1,inception_a_conv1_3_3,inception_a_conv2_3_3,inception_a_pool_1_1],mode='concat',axis=3)
return inception_a
################################################################################
# InceptionV4 : definition of reduction_block_a
示例2: reduction_block_a
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def reduction_block_a(reduction_input_a):
reduction_a_conv1_1_1 = conv_2d(reduction_input_a,384,3,strides=2,padding='valid',activation='relu',name='reduction_a_conv1_1_1')
reduction_a_conv2_1_1 = conv_2d(reduction_input_a,192,1,activation='relu',name='reduction_a_conv2_1_1')
reduction_a_conv2_3_3 = conv_2d(reduction_a_conv2_1_1,224,3,activation='relu',name='reduction_a_conv2_3_3')
reduction_a_conv2_3_3_s2 = conv_2d(reduction_a_conv2_3_3,256,3,strides=2,padding='valid',activation='relu',name='reduction_a_conv2_3_3_s2')
reduction_a_pool = max_pool_2d(reduction_input_a,strides=2,padding='valid',kernel_size=3,name='reduction_a_pool')
# merge reduction_a
reduction_a = merge([reduction_a_conv1_1_1,reduction_a_conv2_3_3_s2,reduction_a_pool],mode='concat',axis=3)
return reduction_a
################################################################################
# InceptionV4 : definition of inception_block_b
示例3: reduction_block_b
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def reduction_block_b(reduction_input_b):
reduction_b_1_1 = conv_2d(reduction_input_b,192,1,activation='relu',name='reduction_b_1_1')
reduction_b_1_3 = conv_2d(reduction_b_1_1,192,3,strides=2,padding='valid',name='reduction_b_1_3')
reduction_b_3_3_reduce = conv_2d(reduction_input_b, 256, filter_size=1, activation='relu', name='reduction_b_3_3_reduce')
reduction_b_3_3_asym_1 = conv_2d(reduction_b_3_3_reduce, 256, filter_size=[1,7], activation='relu',name='reduction_b_3_3_asym_1')
reduction_b_3_3_asym_2 = conv_2d(reduction_b_3_3_asym_1, 320, filter_size=[7,1], activation='relu',name='reduction_b_3_3_asym_2')
reduction_b_3_3=conv_2d(reduction_b_3_3_asym_2,320,3,strides=2,activation='relu',padding='valid',name='reduction_b_3_3')
reduction_b_pool = max_pool_2d(reduction_input_b,kernel_size=3,strides=2,padding='valid')
# merge the reduction_b
reduction_b_output = merge([reduction_b_1_3,reduction_b_3_3,reduction_b_pool],mode='concat',axis=3)
return reduction_b_output
################################################################################
# InceptionV4 : defintion of inception_block_c
示例4: resnext
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
net = input_data(shape=[None, width, height, 3], name='input')
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.layers.conv.resnext_block(net, n, 16, 32)
net = tflearn.resnext_block(net, 1, 32, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 32, 32)
net = tflearn.resnext_block(net, 1, 64, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 64, 32)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, output, activation='softmax')
opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=opt,
loss='categorical_crossentropy')
model = tflearn.DNN(net,
max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例5: build_network
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def build_network(self):
print("---> Starting Neural Network")
self.network = input_data(shape = [None, 48, 48, 1])
self.network = conv_2d(self.network, 64, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = conv_2d(self.network, 64, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = conv_2d(self.network, 128, 4, activation = 'relu')
self.network = dropout(self.network, 0.3)
self.network = fully_connected(self.network, 3072, activation = 'relu')
self.network = fully_connected(self.network, len(self.target_classes), activation = 'softmax')
self.network = regression(self.network,
optimizer = 'momentum',
loss = 'categorical_crossentropy')
self.model = tflearn.DNN(
self.network,
checkpoint_path = 'model_1_nimish',
max_checkpoints = 1,
tensorboard_verbose = 2
)
self.load_model()
示例6: block35
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def block35(net, scale=1.0, activation="relu"):
tower_conv = relu(batch_normalization(conv_2d(net, 32, 1, bias=False, activation=None, name='Conv2d_1x1')))
tower_conv1_0 = relu(batch_normalization(conv_2d(net, 32, 1, bias=False, activation=None,name='Conv2d_0a_1x1')))
tower_conv1_1 = relu(batch_normalization(conv_2d(tower_conv1_0, 32, 3, bias=False, activation=None,name='Conv2d_0b_3x3')))
tower_conv2_0 = relu(batch_normalization(conv_2d(net, 32, 1, bias=False, activation=None, name='Conv2d_0a_1x1')))
tower_conv2_1 = relu(batch_normalization(conv_2d(tower_conv2_0, 48,3, bias=False, activation=None, name='Conv2d_0b_3x3')))
tower_conv2_2 = relu(batch_normalization(conv_2d(tower_conv2_1, 64,3, bias=False, activation=None, name='Conv2d_0c_3x3')))
tower_mixed = merge([tower_conv, tower_conv1_1, tower_conv2_2], mode='concat', axis=3)
tower_out = relu(batch_normalization(conv_2d(tower_mixed, net.get_shape()[3], 1, bias=False, activation=None, name='Conv2d_1x1')))
net += scale * tower_out
if activation:
if isinstance(activation, str):
net = activations.get(activation)(net)
elif hasattr(activation, '__call__'):
net = activation(net)
else:
raise ValueError("Invalid Activation.")
return net
示例7: block17
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def block17(net, scale=1.0, activation="relu"):
tower_conv = relu(batch_normalization(conv_2d(net, 192, 1, bias=False, activation=None, name='Conv2d_1x1')))
tower_conv_1_0 = relu(batch_normalization(conv_2d(net, 128, 1, bias=False, activation=None, name='Conv2d_0a_1x1')))
tower_conv_1_1 = relu(batch_normalization(conv_2d(tower_conv_1_0, 160,[1,7], bias=False, activation=None,name='Conv2d_0b_1x7')))
tower_conv_1_2 = relu(batch_normalization(conv_2d(tower_conv_1_1, 192, [7,1], bias=False, activation=None,name='Conv2d_0c_7x1')))
tower_mixed = merge([tower_conv,tower_conv_1_2], mode='concat', axis=3)
tower_out = relu(batch_normalization(conv_2d(tower_mixed, net.get_shape()[3], 1, bias=False, activation=None, name='Conv2d_1x1')))
net += scale * tower_out
if activation:
if isinstance(activation, str):
net = activations.get(activation)(net)
elif hasattr(activation, '__call__'):
net = activation(net)
else:
raise ValueError("Invalid Activation.")
return net
示例8: block8
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def block8(net, scale=1.0, activation="relu"):
tower_conv = relu(batch_normalization(conv_2d(net, 192, 1, bias=False, activation=None, name='Conv2d_1x1')))
tower_conv1_0 = relu(batch_normalization(conv_2d(net, 192, 1, bias=False, activation=None, name='Conv2d_0a_1x1')))
tower_conv1_1 = relu(batch_normalization(conv_2d(tower_conv1_0, 224, [1,3], bias=False, activation=None, name='Conv2d_0b_1x3')))
tower_conv1_2 = relu(batch_normalization(conv_2d(tower_conv1_1, 256, [3,1], bias=False, name='Conv2d_0c_3x1')))
tower_mixed = merge([tower_conv,tower_conv1_2], mode='concat', axis=3)
tower_out = relu(batch_normalization(conv_2d(tower_mixed, net.get_shape()[3], 1, bias=False, activation=None, name='Conv2d_1x1')))
net += scale * tower_out
if activation:
if isinstance(activation, str):
net = activations.get(activation)(net)
elif hasattr(activation, '__call__'):
net = activation(net)
else:
raise ValueError("Invalid Activation.")
return net
示例9: inception_block_b
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def inception_block_b(input_b):
inception_b_1_1 = conv_2d(input_b, 384, 1, activation='relu', name='inception_b_1_1')
inception_b_3_3_reduce = conv_2d(input_b, 192, filter_size=1, activation='relu', name='inception_b_3_3_reduce')
inception_b_3_3_asym_1 = conv_2d(inception_b_3_3_reduce, 224, filter_size=[1,7], activation='relu',name='inception_b_3_3_asym_1')
inception_b_3_3 = conv_2d(inception_b_3_3_asym_1, 256, filter_size=[7,1], activation='relu',name='inception_b_3_3')
inception_b_5_5_reduce = conv_2d(input_b, 192, filter_size=1, activation='relu', name = 'inception_b_5_5_reduce')
inception_b_5_5_asym_1 = conv_2d(inception_b_5_5_reduce, 192, filter_size=[7,1], name = 'inception_b_5_5_asym_1')
inception_b_5_5_asym_2 = conv_2d(inception_b_5_5_asym_1, 224, filter_size=[1,7], name = 'inception_b_5_5_asym_2')
inception_b_5_5_asym_3 = conv_2d(inception_b_5_5_asym_2, 224, filter_size=[7,1], name = 'inception_b_5_5_asym_3')
inception_b_5_5 = conv_2d(inception_b_5_5_asym_3, 256, filter_size=[1,7], name = 'inception_b_5_5')
inception_b_pool = avg_pool_2d(input_b, kernel_size=3, strides=1 )
inception_b_pool_1_1 = conv_2d(inception_b_pool, 128, filter_size=1, activation='relu', name='inception_b_pool_1_1')
# merge the inception_b
inception_b_output = merge([inception_b_1_1, inception_b_3_3, inception_b_5_5, inception_b_pool_1_1], mode='concat', axis=3)
return inception_b_output
################################################################################
# InceptionV4 : definition of reduction_block_b
示例10: inception_block_c
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def inception_block_c(input_c):
inception_c_1_1 = conv_2d(input_c, 256, 1, activation='relu', name='inception_c_1_1')
inception_c_3_3_reduce = conv_2d(input_c, 384, filter_size=1, activation='relu', name='inception_c_3_3_reduce')
inception_c_3_3_asym_1 = conv_2d(inception_c_3_3_reduce, 256, filter_size=[1,3], activation='relu',name='inception_c_3_3_asym_1')
inception_c_3_3_asym_2 = conv_2d(inception_c_3_3_reduce, 256, filter_size=[3,1], activation='relu',name='inception_c_3_3_asym_2')
inception_c_3_3=merge([inception_c_3_3_asym_1,inception_c_3_3_asym_2],mode='concat',axis=3)
inception_c_5_5_reduce = conv_2d(input_c, 384, filter_size=1, activation='relu', name = 'inception_c_5_5_reduce')
inception_c_5_5_asym_1 = conv_2d(inception_c_5_5_reduce, 448, filter_size=[1,3], name = 'inception_c_5_5_asym_1')
inception_c_5_5_asym_2 = conv_2d(inception_c_5_5_asym_1, 512, filter_size=[3,1], activation='relu',name='inception_c_5_5_asym_2')
inception_c_5_5_asym_3 = conv_2d(inception_c_5_5_asym_2, 256, filter_size=[1,3], activation='relu',name='inception_c_5_5_asym_3')
inception_c_5_5_asym_4 = conv_2d(inception_c_5_5_asym_2, 256, filter_size=[3,1], activation='relu',name='inception_c_5_5_asym_4')
inception_c_5_5=merge([inception_c_5_5_asym_4,inception_c_5_5_asym_3],mode='concat',axis=3)
inception_c_pool = avg_pool_2d(input_c, kernel_size=3, strides=1 )
inception_c_pool_1_1 = conv_2d(inception_c_pool, 256, filter_size=1, activation='relu', name='inception_c_pool_1_1')
# merge the inception_c
inception_c_output = merge([inception_c_1_1, inception_c_3_3, inception_c_5_5, inception_c_pool_1_1], mode='concat', axis=3)
return inception_c_output
################################################################################
示例11: alexnet
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def alexnet(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log')
return model
示例12: alexnet2
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def alexnet2(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log')
return model
示例13: sentnet_color_2d
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def sentnet_color_2d(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
network = input_data(shape=[None, width, height, 3], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network,
max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例14: alexnet2
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def alexnet2(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例15: alexnet
# 需要导入模块: from tflearn.layers import conv [as 别名]
# 或者: from tflearn.layers.conv import conv_2d [as 别名]
def alexnet(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model