当前位置: 首页>>代码示例>>Python>>正文


Python tflearn.dropout方法代码示例

本文整理汇总了Python中tflearn.dropout方法的典型用法代码示例。如果您正苦于以下问题:Python tflearn.dropout方法的具体用法?Python tflearn.dropout怎么用?Python tflearn.dropout使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tflearn的用法示例。


在下文中一共展示了tflearn.dropout方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_critic_network

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def create_critic_network(self):
        with tf.variable_scope('critic'):
            inputs = tflearn.input_data(
                shape=[None, self.s_dim[0], self.s_dim[1]])
            _input = tf.expand_dims(inputs, -1)

            merge_net = tflearn.conv_2d(
                _input, FEATURE_NUM, KERNEL, activation='relu')
            merge_net = tflearn.conv_2d(
                merge_net, FEATURE_NUM, KERNEL, activation='relu')

            avg_net = tflearn.global_avg_pool(merge_net)
            # dense_net_0 = tflearn.fully_connected(
            #    merge_net, 64, activation='relu')
            #dense_net_0 = tflearn.dropout(dense_net_0, 0.8)
            out = tflearn.fully_connected(avg_net, 1, activation='linear')

            return inputs, out 
开发者ID:thu-media,项目名称:QARC,代码行数:20,代码来源:a3c.py

示例2: create_actor_network

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def create_actor_network(self):
        with tf.variable_scope('actor'):
            inputs = tflearn.input_data(shape=[None, self.s_dim[0], self.s_dim[1]])
            split_array = []
            for i in xrange(self.s_dim[0] - 1):
                split = tflearn.conv_1d(inputs[:, i:i + 1, :], FEATURE_NUM, KERNEL, activation='relu')
                flattern = tflearn.flatten(split)
                split_array.append(flattern)
            
            dense_net= tflearn.fully_connected(inputs[:, -1:, :], FEATURE_NUM, activation='relu')
            split_array.append(dense_net)
            merge_net = tflearn.merge(split_array, 'concat')

            dense_net_0 = tflearn.fully_connected(merge_net, 64, activation='relu')
           # dense_net_0 = tflearn.dropout(dense_net_0, 0.8)
            out = tflearn.fully_connected(dense_net_0, self.a_dim, activation='softmax')

            return inputs, out 
开发者ID:thu-media,项目名称:QARC,代码行数:20,代码来源:a3c.py

示例3: create_critic_network

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def create_critic_network(self):
        with tf.variable_scope('critic'):
            inputs = tflearn.input_data(shape=[None, self.s_dim[0], self.s_dim[1]])
            split_array = []
            for i in xrange(self.s_dim[0] - 1):
                split = tflearn.conv_1d(inputs[:, i:i + 1, :], FEATURE_NUM, KERNEL, activation='relu')
                flattern = tflearn.flatten(split)
                split_array.append(flattern)
            
            dense_net= tflearn.fully_connected(inputs[:, -1:, :], FEATURE_NUM, activation='relu')
            split_array.append(dense_net)
            merge_net = tflearn.merge(split_array, 'concat')
            dense_net_0 = tflearn.fully_connected(merge_net, 64, activation='relu')
            #dense_net_0 = tflearn.dropout(dense_net_0, 0.8)
            out = tflearn.fully_connected(dense_net_0, 1, activation='linear')

            return inputs, out 
开发者ID:thu-media,项目名称:QARC,代码行数:19,代码来源:a3c.py

示例4: vgg_net_19

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def vgg_net_19(width, height):
    network = input_data(shape=[None, height, width, 3], name='input')
    network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
    network = dropout(network, keep_prob=0.5)
    network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
    network = dropout(network, keep_prob=0.5)
    network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4)
    
    opt = Momentum(learning_rate=0, momentum = 0.9)
    network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets')
    
    model = DNN(network, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='')
    
    return model

#model of vgg-19 for testing of the activations 
#rename the output you want to test, connect it to the next layer and change the output layer at the bottom (model = DNN(...))
#make sure to use the correct test function (depending if your output is a tensor or a vector) 
开发者ID:lFatality,项目名称:tensorflow2caffe,代码行数:41,代码来源:model.py

示例5: vgg_net_19_activations

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def vgg_net_19_activations(width, height):
    network = input_data(shape=[None, height, width, 3], name='input')
    network1 = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network2 = conv_2d(network1, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network2, 2, strides=2)
    network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
    network = max_pool_2d(network, 2, strides=2)
    network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
    network = dropout(network, keep_prob=0.5)
    network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
    network = dropout(network, keep_prob=0.5)
    network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4)
    
    opt = Momentum(learning_rate=0, momentum = 0.9)
    network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets')
    
    model = DNN(network1, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='')
    
    return model 
开发者ID:lFatality,项目名称:tensorflow2caffe,代码行数:37,代码来源:model.py

示例6: vgg16

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def vgg16(input, num_class):
    x = tflearn.conv_2d(input, 64, 3, activation='relu', scope='conv1_1')
    x = tflearn.conv_2d(x, 64, 3, activation='relu', scope='conv1_2')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool1')

    x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_1')
    x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_2')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool2')

    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_1')
    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_2')
    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool3')

    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_1')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_2')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool4')

    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_1')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_2')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool5')

    x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc6')
    x = tflearn.dropout(x, 0.5, name='dropout1')

    x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc7')
    x = tflearn.dropout(x, 0.5, name='dropout2')

    x = tflearn.fully_connected(
        x, num_class, activation='sigmoid', scope='fc8', restore=False)
    return x 
开发者ID:thu-media,项目名称:QARC,代码行数:35,代码来源:vqn.py

示例7: vgg16

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def vgg16(placeholderX=None):

    x = tflearn.input_data(shape=[None, 224, 224, 3], name='input',
                           placeholder=placeholderX)

    x = tflearn.conv_2d(x, 64, 3, activation='relu', scope='conv1_1')
    x = tflearn.conv_2d(x, 64, 3, activation='relu', scope='conv1_2')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool1')

    x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_1')
    x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_2')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool2')

    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_1')
    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_2')
    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool3')

    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_1')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_2')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool4')

    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_1')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_2')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool5')

    x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc6')
    x = tflearn.dropout(x, 0.5, name='dropout1')

    x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc7')
    x = tflearn.dropout(x, 0.5, name='dropout2')

    x = tflearn.fully_connected(x, 1000, activation='softmax', scope='fc8')

    return x 
开发者ID:tflearn,项目名称:models,代码行数:39,代码来源:vgg16.py

示例8: make_core_network

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def make_core_network(network):
        network = tflearn.reshape(network, [-1, 28, 28, 1], name="reshape")
        network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
        network = max_pool_2d(network, 2)
        network = local_response_normalization(network)
        network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
        network = max_pool_2d(network, 2)
        network = local_response_normalization(network)
        network = fully_connected(network, 128, activation='tanh')
        network = dropout(network, 0.8)
        network = fully_connected(network, 256, activation='tanh')
        network = dropout(network, 0.8)
        network = fully_connected(network, 10, activation='softmax')
        return network 
开发者ID:limbo018,项目名称:FRU,代码行数:16,代码来源:weights_loading_scope.py

示例9: vgg16

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def vgg16(input, num_class):

    x = tflearn.conv_2d(input, 64, 3, activation='relu', scope='conv1_1')
    x = tflearn.conv_2d(x, 64, 3, activation='relu', scope='conv1_2')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool1')

    x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_1')
    x = tflearn.conv_2d(x, 128, 3, activation='relu', scope='conv2_2')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool2')

    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_1')
    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_2')
    x = tflearn.conv_2d(x, 256, 3, activation='relu', scope='conv3_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool3')

    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_1')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_2')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv4_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool4')

    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_1')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_2')
    x = tflearn.conv_2d(x, 512, 3, activation='relu', scope='conv5_3')
    x = tflearn.max_pool_2d(x, 2, strides=2, name='maxpool5')

    x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc6')
    x = tflearn.dropout(x, 0.5, name='dropout1')

    x = tflearn.fully_connected(x, 4096, activation='relu', scope='fc7')
    x = tflearn.dropout(x, 0.5, name='dropout2')

    x = tflearn.fully_connected(x, num_class, activation='softmax', scope='fc8',
                                restore=False)

    return x 
开发者ID:limbo018,项目名称:FRU,代码行数:37,代码来源:vgg_network_finetuning.py

示例10: deep_model

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def deep_model(self, wide_inputs, n_inputs, n_nodes=[100, 50], use_dropout=False):
        '''
        Model - deep, i.e. two-layer fully connected network model
        '''
        cc_input_var = {}
        cc_embed_var = {}
        flat_vars = []
        if self.verbose:
            print ("--> deep model: %s categories, %d continuous" % (len(self.categorical_columns), n_inputs))
        for cc, cc_size in self.categorical_columns.items():
            cc_input_var[cc] = tflearn.input_data(shape=[None, 1], name="%s_in" % cc,  dtype=tf.int32)
            # embedding layers only work on CPU!  No GPU implementation in tensorflow, yet!
            cc_embed_var[cc] = tflearn.layers.embedding_ops.embedding(cc_input_var[cc],    cc_size,  8, name="deep_%s_embed" % cc)
            if self.verbose:
                print ("    %s_embed = %s" % (cc, cc_embed_var[cc]))
            flat_vars.append(tf.squeeze(cc_embed_var[cc], squeeze_dims=[1], name="%s_squeeze" % cc))

        network = tf.concat([wide_inputs] + flat_vars, 1, name="deep_concat")
        for k in range(len(n_nodes)):
            network = tflearn.fully_connected(network, n_nodes[k], activation="relu", name="deep_fc%d" % (k+1))
            if use_dropout:
                network = tflearn.dropout(network, 0.5, name="deep_dropout%d" % (k+1))
        if self.verbose:
            print ("Deep model network before output %s" % network)
        network = tflearn.fully_connected(network, 1, activation="linear", name="deep_fc_output", bias=False)
        network = tf.reshape(network, [-1, 1])	# so that accuracy is binary_accuracy
        if self.verbose:
            print ("Deep model network %s" % network)
        return network 
开发者ID:limbo018,项目名称:FRU,代码行数:31,代码来源:recommender_wide_and_deep.py

示例11: deep_model

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def deep_model(self, wide_inputs, n_inputs, n_nodes=[100, 50], use_dropout=False):
        '''
        Model - deep, i.e. two-layer fully connected network model
        '''
        cc_input_var = {}
        cc_embed_var = {}
        flat_vars = []
        if self.verbose:
            print ("--> deep model: %s categories, %d continuous" % (len(self.categorical_columns), n_inputs))
        for cc, cc_size in self.categorical_columns.items():
            cc_input_var[cc] = tflearn.input_data(shape=[None, 1], name="%s_in" % cc,  dtype=tf.int32)
            # embedding layers only work on CPU!  No GPU implementation in tensorflow, yet!
            cc_embed_var[cc] = tflearn.layers.embedding_ops.embedding(cc_input_var[cc],    cc_size,  8, name="deep_%s_embed" % cc)
            if self.verbose:
                print ("    %s_embed = %s" % (cc, cc_embed_var[cc]))
            flat_vars.append(tf.squeeze(cc_embed_var[cc], squeeze_dims=[1], name="%s_squeeze" % cc))

        network = tf.concat(1, [wide_inputs] + flat_vars, name="deep_concat")
        for k in range(len(n_nodes)):
            network = tflearn.fully_connected(network, n_nodes[k], activation="relu", name="deep_fc%d" % (k+1))
            if use_dropout:
                network = tflearn.dropout(network, 0.5, name="deep_dropout%d" % (k+1))
        if self.verbose:
            print ("Deep model network before output %s" % network)
        network = tflearn.fully_connected(network, 1, activation="linear", name="deep_fc_output", bias=False)
        network = tf.reshape(network, [-1, 1])	# so that accuracy is binary_accuracy
        if self.verbose:
            print ("Deep model network %s" % network)
        return network 
开发者ID:ichuang,项目名称:tflearn_wide_and_deep,代码行数:31,代码来源:tflearn_wide_and_deep.py

示例12: test_core_layers

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def test_core_layers(self):

        X = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]]
        Y_nand = [[1.], [1.], [1.], [0.]]
        Y_or = [[0.], [1.], [1.], [1.]]

        # Graph definition
        with tf.Graph().as_default():
            # Building a network with 2 optimizers
            g = tflearn.input_data(shape=[None, 2])

            # Nand operator definition
            g_nand = tflearn.fully_connected(g, 32, activation='linear')
            g_nand = tflearn.fully_connected(g_nand, 32, activation='linear')
            g_nand = tflearn.fully_connected(g_nand, 1, activation='sigmoid')
            g_nand = tflearn.regression(g_nand, optimizer='sgd',
                                        learning_rate=2.,
                                        loss='binary_crossentropy')
            # Or operator definition
            g_or = tflearn.fully_connected(g, 32, activation='linear')
            g_or = tflearn.fully_connected(g_or, 32, activation='linear')
            g_or = tflearn.fully_connected(g_or, 1, activation='sigmoid')
            g_or = tflearn.regression(g_or, optimizer='sgd',
                                      learning_rate=2.,
                                      loss='binary_crossentropy')
            # XOR merging Nand and Or operators
            g_xor = tflearn.merge([g_nand, g_or], mode='elemwise_mul')

            # Training
            m = tflearn.DNN(g_xor)
            m.fit(X, [Y_nand, Y_or], n_epoch=400, snapshot_epoch=False)

            # Testing
            self.assertLess(m.predict([[0., 0.]])[0][0], 0.01)
            self.assertGreater(m.predict([[0., 1.]])[0][0], 0.9)
            self.assertGreater(m.predict([[1., 0.]])[0][0], 0.9)
            self.assertLess(m.predict([[1., 1.]])[0][0], 0.01)

        # Bulk Tests
        with tf.Graph().as_default():
            net = tflearn.input_data(shape=[None, 2])
            net = tflearn.flatten(net)
            net = tflearn.reshape(net, new_shape=[-1])
            net = tflearn.activation(net, 'relu')
            net = tflearn.dropout(net, 0.5)
            net = tflearn.single_unit(net) 
开发者ID:limbo018,项目名称:FRU,代码行数:48,代码来源:test_layers.py

示例13: test_sequencegenerator_words

# 需要导入模块: import tflearn [as 别名]
# 或者: from tflearn import dropout [as 别名]
def test_sequencegenerator_words(self):

        with tf.Graph().as_default():
            text = ["hello","world"]*100
            word_idx = {"hello": 0, "world": 1}
            maxlen = 2

            vec = [x for x in map(word_idx.get, text) if x is not None]

            sequences = []
            next_words = []
            for i in range(0, len(vec) - maxlen, 3):
                sequences.append(vec[i: i + maxlen])
                next_words.append(vec[i + maxlen])

            X = np.zeros((len(sequences), maxlen, len(word_idx)), dtype=np.bool)
            Y = np.zeros((len(sequences), len(word_idx)), dtype=np.bool)
            for i, seq in enumerate(sequences):
                for t, idx in enumerate(seq):
                    X[i, t, idx] = True
                    Y[i, next_words[i]] = True

            g = tflearn.input_data(shape=[None, maxlen, len(word_idx)])
            g = tflearn.lstm(g, 32)
            g = tflearn.dropout(g, 0.5)
            g = tflearn.fully_connected(g, len(word_idx), activation='softmax')
            g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
                                   learning_rate=0.1)

            m = tflearn.SequenceGenerator(g, dictionary=word_idx,
                                          seq_maxlen=maxlen,
                                          clip_gradients=5.0)
            m.fit(X, Y, validation_set=0.1, n_epoch=100, snapshot_epoch=False)
            res = m.generate(4, temperature=.5, seq_seed=["hello","world"])
            res_str = " ".join(res[-2:])
            self.assertEqual(res_str, "hello world", "SequenceGenerator (word level) test failed! Generated sequence: " + res_str + " expected 'hello world'")

            # Testing save method
            m.save("test_seqgen_word.tflearn")
            self.assertTrue(os.path.exists("test_seqgen_word.tflearn.index"))

            # Testing load method
            m.load("test_seqgen_word.tflearn")
            res = m.generate(4, temperature=.5, seq_seed=["hello","world"])
            res_str = " ".join(res[-2:])
            self.assertEqual(res_str, "hello world", "Reloaded SequenceGenerator (word level) test failed! Generated sequence: " + res_str + " expected 'hello world'") 
开发者ID:limbo018,项目名称:FRU,代码行数:48,代码来源:test_models.py


注:本文中的tflearn.dropout方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。