本文整理汇总了Python中tf_grouping.knn_point方法的典型用法代码示例。如果您正苦于以下问题:Python tf_grouping.knn_point方法的具体用法?Python tf_grouping.knn_point怎么用?Python tf_grouping.knn_point使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tf_grouping
的用法示例。
在下文中一共展示了tf_grouping.knn_point方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: sample_and_group
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def sample_and_group(npoint, radius, nsample, xyz, points, knn=False, use_xyz=True):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs
(subtracted by seed point XYZ) in local regions
'''
new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz)) # (batch_size, npoint, 3)
if knn:
_,idx = knn_point(nsample, xyz, new_xyz)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1]) # translation normalization
if points is not None:
grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
if use_xyz:
new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
else:
new_points = grouped_points
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz
示例2: sample_and_group
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def sample_and_group(npoint, radius, nsample, xyz, points, knn=False, use_xyz=True):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs
(subtracted by seed point XYZ) in local regions
'''
sample_idx = farthest_point_sample(npoint, xyz)
new_xyz = gather_point(xyz, sample_idx) # (batch_size, npoint, 3)
if knn:
_,idx = knn_point(nsample, xyz, new_xyz)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1]) # translation normalization
if points is not None:
grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
if use_xyz:
new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
else:
new_points = grouped_points
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, sample_idx, grouped_xyz
示例3: sample_and_group
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def sample_and_group(npoint, radius, nsample, xyz, points, knn=False, use_xyz=True):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs (subtracted by seed point XYZ) in local regions
'''
new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz)) # (batch_size, npoint, 3)
if knn:
_,idx = knn_point(nsample, xyz, new_xyz)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1]) # translation normalization
if points is not None:
grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
if use_xyz:
new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
else:
new_points = grouped_points
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz
示例4: pc_sampling
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def pc_sampling(xyz,
feat,
nsample,
num_point,
scope='sampling'):
""" Fully connected layer with non-linear operation.
Args:
xyz: 3-D tensor B x N x 3
nsample: k
num_point: N2
feat: 3-D tensor B x N x C
Returns:
feat_sample: 3-D tensor B x N2 x C
"""
with tf.variable_scope(scope) as sc:
xyz_new = gather_point(xyz, farthest_point_sample(num_point, xyz))
_, idx_pooling = knn_point(nsample, xyz, xyz_new)
grouped_points = group_point(feat, idx_pooling)
feat_sample = tf.nn.max_pool(grouped_points, [1,1,nsample,1], [1,1,1,1],
padding='VALID', data_format='NHWC', name="MAX_POOLING")
feat_sample = tf.squeeze(feat_sample, axis=[2])
return feat_sample, xyz_new
示例5: sample_and_group
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def sample_and_group(npoint, radius, nsample, xyz, points, tnet_spec=None, knn=False, use_xyz=True):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
tnet_spec: dict (keys: mlp, mlp2, is_training, bn_decay), if None do not apply tnet
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs
(subtracted by seed point XYZ) in local regions
'''
new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz)) # (batch_size, npoint, 3)
if knn:
_,idx = knn_point(nsample, xyz, new_xyz)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1]) # translation normalization
if tnet_spec is not None:
grouped_xyz = tnet(grouped_xyz, tnet_spec)
if points is not None:
grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
if use_xyz:
new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
else:
new_points = grouped_points
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz
示例6: sample_and_group
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def sample_and_group(npoint, radius, nsample, xyz, points, knn=False, use_xyz=True):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs
(subtracted by seed point XYZ) in local regions
'''
new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz)) # (batch_size, npoint, 3)
if knn:
_, idx = knn_point(nsample, xyz, new_xyz)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1, 1, nsample, 1]) # translation normalization
if points is not None:
grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
if use_xyz:
new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nample, 3+channel)
else:
new_points = grouped_points
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz
示例7: flow_embedding_module
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def flow_embedding_module(xyz1, xyz2, feat1, feat2, radius, nsample, mlp, is_training, bn_decay, scope, bn=True, pooling='max', knn=True, corr_func='elementwise_product'):
"""
Input:
xyz1: (batch_size, npoint, 3)
xyz2: (batch_size, npoint, 3)
feat1: (batch_size, npoint, channel)
feat2: (batch_size, npoint, channel)
Output:
xyz1: (batch_size, npoint, 3)
feat1_new: (batch_size, npoint, mlp[-1])
"""
if knn:
_, idx = knn_point(nsample, xyz2, xyz1)
else:
idx, cnt = query_ball_point(radius, nsample, xyz2, xyz1)
_, idx_knn = knn_point(nsample, xyz2, xyz1)
cnt = tf.tile(tf.expand_dims(cnt, -1), [1,1,nsample])
idx = tf.where(cnt > (nsample-1), idx, idx_knn)
xyz2_grouped = group_point(xyz2, idx) # batch_size, npoint, nsample, 3
xyz1_expanded = tf.expand_dims(xyz1, 2) # batch_size, npoint, 1, 3
xyz_diff = xyz2_grouped - xyz1_expanded # batch_size, npoint, nsample, 3
feat2_grouped = group_point(feat2, idx) # batch_size, npoint, nsample, channel
feat1_expanded = tf.expand_dims(feat1, 2) # batch_size, npoint, 1, channel
# TODO: change distance function
if corr_func == 'elementwise_product':
feat_diff = feat2_grouped * feat1_expanded # batch_size, npoint, nsample, channel
elif corr_func == 'concat':
feat_diff = tf.concat(axis=-1, values=[feat2_grouped, tf.tile(feat1_expanded,[1,1,nsample,1])]) # batch_size, npoint, sample, channel*2
elif corr_func == 'dot_product':
feat_diff = tf.reduce_sum(feat2_grouped * feat1_expanded, axis=[-1], keep_dims=True) # batch_size, npoint, nsample, 1
elif corr_func == 'cosine_dist':
feat2_grouped = tf.nn.l2_normalize(feat2_grouped, -1)
feat1_expanded = tf.nn.l2_normalize(feat1_expanded, -1)
feat_diff = tf.reduce_sum(feat2_grouped * feat1_expanded, axis=[-1], keep_dims=True) # batch_size, npoint, nsample, 1
elif corr_func == 'flownet_like': # assuming square patch size k = 0 as the FlowNet paper
batch_size = xyz1.get_shape()[0].value
npoint = xyz1.get_shape()[1].value
feat_diff = tf.reduce_sum(feat2_grouped * feat1_expanded, axis=[-1], keep_dims=True) # batch_size, npoint, nsample, 1
total_diff = tf.concat(axis=-1, values=[xyz_diff, feat_diff]) # batch_size, npoint, nsample, 4
feat1_new = tf.reshape(total_diff, [batch_size, npoint, -1]) # batch_size, npoint, nsample*4
#feat1_new = tf.concat(axis=[-1], values=[feat1_new, feat1]) # batch_size, npoint, nsample*4+channel
return xyz1, feat1_new
feat1_new = tf.concat([feat_diff, xyz_diff], axis=3) # batch_size, npoint, nsample, [channel or 1] + 3
# TODO: move scope to outer indent
with tf.variable_scope(scope) as sc:
for i, num_out_channel in enumerate(mlp):
feat1_new = tf_util.conv2d(feat1_new, num_out_channel, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv_diff_%d'%(i), bn_decay=bn_decay)
if pooling=='max':
feat1_new = tf.reduce_max(feat1_new, axis=[2], keep_dims=False, name='maxpool_diff')
elif pooling=='avg':
feat1_new = tf.reduce_mean(feat1_new, axis=[2], keep_dims=False, name='avgpool_diff')
return xyz1, feat1_new
示例8: set_upconv_module
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def set_upconv_module(xyz1, xyz2, feat1, feat2, nsample, mlp, mlp2, is_training, scope, bn_decay=None, bn=True, pooling='max', radius=None, knn=True):
"""
Feature propagation from xyz2 (less points) to xyz1 (more points)
Inputs:
xyz1: (batch_size, npoint1, 3)
xyz2: (batch_size, npoint2, 3)
feat1: (batch_size, npoint1, channel1) features for xyz1 points (earlier layers)
feat2: (batch_size, npoint2, channel2) features for xyz2 points
Output:
feat1_new: (batch_size, npoint2, mlp[-1] or mlp2[-1] or channel1+3)
TODO: Add support for skip links. Study how delta(XYZ) plays a role in feature updating.
"""
with tf.variable_scope(scope) as sc:
if knn:
l2_dist, idx = knn_point(nsample, xyz2, xyz1)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz2, xyz1)
xyz2_grouped = group_point(xyz2, idx) # batch_size, npoint1, nsample, 3
xyz1_expanded = tf.expand_dims(xyz1, 2) # batch_size, npoint1, 1, 3
xyz_diff = xyz2_grouped - xyz1_expanded # batch_size, npoint1, nsample, 3
feat2_grouped = group_point(feat2, idx) # batch_size, npoint1, nsample, channel2
net = tf.concat([feat2_grouped, xyz_diff], axis=3) # batch_size, npoint1, nsample, channel2+3
if mlp is None: mlp=[]
for i, num_out_channel in enumerate(mlp):
net = tf_util.conv2d(net, num_out_channel, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv%d'%(i), bn_decay=bn_decay)
if pooling=='max':
feat1_new = tf.reduce_max(net, axis=[2], keep_dims=False, name='maxpool') # batch_size, npoint1, mlp[-1]
elif pooling=='avg':
feat1_new = tf.reduce_mean(net, axis=[2], keep_dims=False, name='avgpool') # batch_size, npoint1, mlp[-1]
if feat1 is not None:
feat1_new = tf.concat([feat1_new, feat1], axis=2) # batch_size, npoint1, mlp[-1]+channel1
feat1_new = tf.expand_dims(feat1_new, 2) # batch_size, npoint1, 1, mlp[-1]+channel2
if mlp2 is None: mlp2=[]
for i, num_out_channel in enumerate(mlp2):
feat1_new = tf_util.conv2d(feat1_new, num_out_channel, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='post-conv%d'%(i), bn_decay=bn_decay)
feat1_new = tf.squeeze(feat1_new, [2]) # batch_size, npoint1, mlp2[-1]
return feat1_new
示例9: point_rnn
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def point_rnn(P1,
P2,
X1,
S2,
radius,
nsample,
out_channels,
knn=False,
pooling='max',
scope='point_rnn'):
"""
Input:
P1: (batch_size, npoint, 3)
P2: (batch_size, npoint, 3)
X1: (batch_size, npoint, feat_channels)
S2: (batch_size, npoint, out_channels)
Output:
S1: (batch_size, npoint, out_channels)
"""
# 1. Sample points
if knn:
_, idx = knn_point(nsample, P2, P1)
else:
idx, cnt = query_ball_point(radius, nsample, P2, P1)
_, idx_knn = knn_point(nsample, P2, P1)
cnt = tf.tile(tf.expand_dims(cnt, -1), [1, 1, nsample])
idx = tf.where(cnt > (nsample-1), idx, idx_knn)
# 2.1 Group P2 points
P2_grouped = group_point(P2, idx) # batch_size, npoint, nsample, 3
# 2.2 Group P2 states
S2_grouped = group_point(S2, idx) # batch_size, npoint, nsample, out_channels
# 3. Calcaulate displacements
P1_expanded = tf.expand_dims(P1, 2) # batch_size, npoint, 1, 3
displacement = P2_grouped - P1_expanded # batch_size, npoint, nsample, 3
# 4. Concatenate X1, S2 and displacement
if X1 is not None:
X1_expanded = tf.tile(tf.expand_dims(X1, 2), [1, 1, nsample, 1]) # batch_size, npoint, sample, feat_channels
correlation = tf.concat([S2_grouped, X1_expanded], axis=3) # batch_size, npoint, nsample, feat_channels+out_channels
correlation = tf.concat([correlation, displacement], axis=3) # batch_size, npoint, nsample, feat_channels+out_channels+3
else:
correlation = tf.concat([S2_grouped, displacement], axis=3) # batch_size, npoint, nsample, out_channels+3
# 5. Fully-connected layer (the only parameters)
with tf.variable_scope(scope) as sc:
S1 = tf.layers.conv2d(inputs=correlation, filters=out_channels, kernel_size=1, strides=1, padding='valid', data_format='channels_last', activation=None, name='fc')
# 6. Pooling
if pooling=='max':
return tf.reduce_max(S1, axis=[2], keepdims=False)
elif pooling=='avg':
return tf.reduce_mean(S1, axis=[2], keepdims=False)
示例10: get_model
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def get_model(xyz, is_training, bn_decay=None, num_classes=40):
batch_size = xyz.get_shape()[0].value
num_point = xyz.get_shape()[1].value
nsample = 20
G = 16
taylor_channel = 5
with tf.variable_scope('delta') as sc:
_, idx = knn_point(nsample, xyz, xyz)
grouped_xyz = group_point(xyz, idx)
point_cloud_tile = tf.expand_dims(xyz, [2])
point_cloud_tile = tf.tile(point_cloud_tile, [1, 1, nsample, 1])
delta = grouped_xyz - point_cloud_tile
with tf.variable_scope('fanConv1') as sc:
feat_1 = tf_util.spiderConv(xyz, idx, delta, 32, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
with tf.variable_scope('fanConv2') as sc:
feat_2 = tf_util.spiderConv(feat_1, idx, delta, 64, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
with tf.variable_scope('fanConv3') as sc:
feat_3 = tf_util.spiderConv(feat_2, idx, delta, 128, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
with tf.variable_scope('fanConv4') as sc:
feat_4 = tf_util.spiderConv(feat_3, idx, delta, 256, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
feat = tf.concat([feat_1, feat_2, feat_3, feat_4], 2)
#top-k pooling
net = tf_util.topk_pool(feat, k = 2, scope='topk_pool')
net = tf.reshape(net, [batch_size, -1])
net = tf_util.fully_connected(net, 1024, bn=True, is_training=is_training,
scope='fc1', bn_decay=bn_decay, is_multi_GPU=True)
net = tf_util.dropout(net, keep_prob=0.3, is_training=is_training,
scope='dp1')
net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
scope='fc2', bn_decay=bn_decay, is_multi_GPU=True)
net = tf_util.dropout(net, keep_prob=0.3, is_training=is_training,
scope='dp2')
net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')
return net
示例11: get_model
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def get_model(xyz_withnor, is_training, bn_decay=None, num_classes=40):
batch_size = xyz_withnor.get_shape()[0].value
num_point = xyz_withnor.get_shape()[1].value
K_knn = 20
taylor_channel = 3
xyz = xyz_withnor[:, :, 0:3]
with tf.variable_scope('delta') as sc:
_, idx = knn_point(K_knn, xyz, xyz)
grouped_xyz = group_point(xyz, idx)
point_cloud_tile = tf.expand_dims(xyz, [2])
point_cloud_tile = tf.tile(point_cloud_tile, [1, 1, K_knn, 1])
delta = grouped_xyz - point_cloud_tile
with tf.variable_scope('SpiderConv1') as sc:
feat_1 = tf_util.spiderConv(xyz_withnor, idx, delta, 32, taylor_channel = taylor_channel,
bn=True, is_training=is_training, bn_decay=bn_decay)
with tf.variable_scope('SpiderConv2') as sc:
feat_2 = tf_util.spiderConv(feat_1, idx, delta, 64, taylor_channel = taylor_channel,
bn=True, is_training=is_training, bn_decay=bn_decay)
with tf.variable_scope('SpiderConv3') as sc:
feat_3 = tf_util.spiderConv(feat_2, idx, delta, 128, taylor_channel = taylor_channel,
bn=True, is_training=is_training, bn_decay=bn_decay)
with tf.variable_scope('SpiderConv4') as sc:
feat_4 = tf_util.spiderConv(feat_3, idx, delta, 256, taylor_channel = taylor_channel,
bn=True, is_training=is_training, bn_decay=bn_decay)
feat = tf.concat([feat_1, feat_2, feat_3, feat_4], 2)
#top-k pooling
net = tf_util.topk_pool(feat, k = 2, scope='topk_pool')
net = tf.reshape(net, [batch_size, -1])
net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
scope='fc1', bn_decay=bn_decay)
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training,
scope='dp1')
net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training,
scope='fc2', bn_decay=bn_decay)
net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training,
scope='dp2')
net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')
return net
示例12: get_model
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def get_model(xyz, is_training, bn_decay=None, num_class=NUM_CLASSES):
batch_size = xyz.get_shape()[0].value
num_point = xyz.get_shape()[1].value
nsample = 20
G = 16
taylor_channel = 5
with tf.variable_scope('delta') as sc:
_, idx = knn_point(nsample, xyz, xyz)
grouped_xyz = group_point(xyz, idx)
point_cloud_tile = tf.expand_dims(xyz, [2])
point_cloud_tile = tf.tile(point_cloud_tile, [1, 1, nsample, 1])
delta = grouped_xyz - point_cloud_tile
with tf.variable_scope('fanConv1') as sc:
feat_1 = tf_util.spiderConv(xyz, idx, delta, 32, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
with tf.variable_scope('fanConv2') as sc:
feat_2 = tf_util.spiderConv(feat_1, idx, delta, 64, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
with tf.variable_scope('fanConv3') as sc:
feat_3 = tf_util.spiderConv(feat_2, idx, delta, 128, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
with tf.variable_scope('fanConv4') as sc:
feat_4 = tf_util.spiderConv(feat_3, idx, delta, 256, taylor_channel = taylor_channel,
gn=True, G=G, is_multi_GPU=True)
feat = tf.concat([feat_1, feat_2, feat_3, feat_4], 2)
#top-k pooling
net = tf_util.topk_pool(feat, k = 2, scope='topk_pool')
net = tf.reshape(net, [batch_size, -1])
net = tf_util.fully_connected(net, 1024, bn=True, is_training=is_training,
scope='fc1', bn_decay=bn_decay, is_multi_GPU=True)
net = tf_util.dropout(net, keep_prob=0.3, is_training=is_training,
scope='dp1')
net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training,
scope='fc2', bn_decay=bn_decay, is_multi_GPU=True)
net = tf_util.dropout(net, keep_prob=0.3, is_training=is_training,
scope='dp2')
net = tf_util.fully_connected(net, num_class, activation_fn=None, scope='fc3')
return net
示例13: set_upconv_module
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def set_upconv_module(xyz1, xyz2, feat1, feat2, nsample, mlp, mlp2, is_training, scope, bn_decay=None, bn=True, pooling='max', radius=None, knn=True):
"""
Feature propagation from xyz2 (less points) to xyz1 (more points)
Inputs:
xyz1: (batch_size, npoint1, 3)
xyz2: (batch_size, npoint2, 3)
feat1: (batch_size, npoint1, channel1) features for xyz1 points (earlier layers)
feat2: (batch_size, npoint2, channel2) features for xyz2 points
Output:
feat1_new: (batch_size, npoint2, mlp[-1] or mlp2[-1] or channel1+3)
TODO: Add support for skip links. Study how delta(XYZ) plays a role in feature updating.
"""
with tf.variable_scope(scope) as sc:
if knn:
l2_dist, idx = knn_point(nsample, xyz2, xyz1)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz2, xyz1)
xyz2_grouped = group_point(xyz2, idx) # batch_size, npoint1, nsample, 3
xyz1_expanded = tf.expand_dims(xyz1, 2) # batch_size, npoint1, 1, 3
xyz_diff = xyz2_grouped - xyz1_expanded # batch_size, npoint1, nsample, 3
feat2_grouped = group_point(feat2, idx) # batch_size, npoint1, nsample, channel2
net = tf.concat([feat2_grouped, xyz_diff], axis=3) # batch_size, npoint1, nsample, channel2+3
if mlp is None: mlp=[]
for i, num_out_channel in enumerate(mlp):
net = tf_util.conv2d(net, num_out_channel, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv%d'%(i), bn_decay=bn_decay)
if pooling=='max':
feat1_new = tf.reduce_max(net, axis=[2], keep_dims=False, name='maxpool') # batch_size, npoint1, mlp[-1]
elif pooling=='avg':
feat1_new = tf.reduce_mean(net, axis=[2], keep_dims=False, name='avgpool') # batch_size, npoint1, mlp[-1]
if feat1 is not None:
feat1_new = tf.concat([feat1_new, feat1], axis=2) # batch_size, npoint1, mlp[-1]+channel1
feat1_new = tf.expand_dims(feat1_new, 2) # batch_size, npoint1, 1, mlp[-1]+channel2
if mlp2 is None: mlp2=[]
for i, num_out_channel in enumerate(mlp2):
feat1_new = tf_util.conv2d(feat1_new, num_out_channel, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='post-conv%d'%(i), bn_decay=bn_decay)
feat1_new = tf.squeeze(feat1_new, [2]) # batch_size, npoint1, mlp2[-1]
return feat1_new
示例14: sample_and_group
# 需要导入模块: import tf_grouping [as 别名]
# 或者: from tf_grouping import knn_point [as 别名]
def sample_and_group(npoint, radius, nsample, xyz, points, tnet_spec=None, knn=False, use_xyz=True, centralize_points=False):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
tnet_spec: dict (keys: mlp, mlp2, is_training, bn_decay), if None do not apply tnet
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
idx: (batch_size, npoint, nsample) TF tensor, indices of local points as in ndataset points
grouped_xyz: (batch_size, npoint, nsample, 3) TF tensor, normalized point XYZs
(subtracted by seed point XYZ) in local regions
'''
fpsidx = farthest_point_sample(npoint, xyz)
new_xyz = gather_point(xyz, fpsidx) # (batch_size, npoint, 3)
if knn:
_,idx = knn_point(nsample, xyz, new_xyz)
else:
idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = group_point(xyz, idx) # (batch_size, npoint, nsample, 3)
grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1,1,nsample,1]) # translation normalization
if tnet_spec is not None:
grouped_xyz = tnet(grouped_xyz, tnet_spec)
if points is not None:
grouped_points = group_point(points, idx) # (batch_size, npoint, nsample, channel)
if centralize_points:
central_points = gather_point(points[:,:,:3], fpsidx)
grouped_points = tf.concat((grouped_points[:,:,:,:3]-tf.tile(tf.expand_dims(central_points, 2), [1,1,nsample,1]),grouped_points[:,:,:,3:]),-1)
if use_xyz:
new_points = tf.concat([grouped_xyz, grouped_points], axis=-1) # (batch_size, npoint, nsample, 3+channel)
else:
new_points = grouped_points
else:
new_points = grouped_xyz
return new_xyz, new_points, idx, grouped_xyz