本文整理汇总了Python中tensorrt.OnnxParser方法的典型用法代码示例。如果您正苦于以下问题:Python tensorrt.OnnxParser方法的具体用法?Python tensorrt.OnnxParser怎么用?Python tensorrt.OnnxParser使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorrt
的用法示例。
在下文中一共展示了tensorrt.OnnxParser方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def build_engine(onnx, verbose=False):
"""Build TensorRT engine from the ONNX model."""
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(*EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = MAX_BATCH
builder.fp16_mode = FP16_MODE
with open(onnx, 'rb') as model:
if not parser.parse(model.read()):
print('ERROR: Failed to parse the ONNX file.')
for error in range(parser.num_errors):
print(parser.get_error(error))
return None
if trt.__version__[0] >= '7':
# set input to batch size 1
shape = list(network.get_input(0).shape)
shape[0] = 1
network.get_input(0).shape = shape
return builder.build_cuda_engine(network)
示例2: build_engine_onnx
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def build_engine_onnx(model_file):
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = common.GiB(1)
# Load the Onnx model and parse it in order to populate the TensorRT network.
with open(model_file, 'rb') as model:
parser.parse(model.read())
return builder.build_cuda_engine(network)
示例3: get_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def get_engine(onnx_file_path, engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = 1
# Parse model file
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
engine = builder.build_cuda_engine(network)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
return build_engine()
示例4: get_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def get_engine(onnx_file_path, engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 28 # 256MiB
builder.max_batch_size = 1
# Parse model file
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
engine = builder.build_cuda_engine(network)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
return build_engine()
示例5: build_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def build_engine(onnx_file_path, engine_file_path, precision, max_batch_size, cache_file=None):
"""Builds a new TensorRT engine and saves it, if no engine presents"""
if os.path.exists(engine_file_path):
logger.info('{} TensorRT engine already exists. Skip building engine...'.format(precision))
return
logger.info('Building {} TensorRT engine from onnx file...'.format(precision))
with trt.Builder(TRT_LOGGER) as b, b.create_network() as n, trt.OnnxParser(n, TRT_LOGGER) as p:
b.max_workspace_size = 1 << 30 # 1GB
b.max_batch_size = max_batch_size
if precision == 'fp16':
b.fp16_mode = True
elif precision == 'int8':
from ..calibrator import Calibrator
b.int8_mode = True
b.int8_calibrator = Calibrator(cache_file=cache_file)
elif precision == 'fp32':
pass
else:
logger.error('Engine precision not supported: {}'.format(precision))
raise NotImplementedError
# Parse model file
with open(onnx_file_path, 'rb') as model:
p.parse(model.read())
if p.num_errors:
logger.error('Parsing onnx file found {} errors.'.format(p.num_errors))
engine = b.build_cuda_engine(n)
print(engine_file_path)
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
示例6: build_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def build_engine(model_file):
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = MAX_WORKSPACE_SIZE
builder.max_batch_size = MAX_BATCH_SIZE
with open(model_file, 'rb') as model:
parser.parse(model.read())
return builder.build_cuda_engine(network)
示例7: build_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def build_engine(onnx_file_path, engine_file_path, verbose=False):
"""Takes an ONNX file and creates a TensorRT engine."""
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(*EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 28
builder.max_batch_size = 1
builder.fp16_mode = True
#builder.strict_type_constraints = True
# Parse model file
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
if not parser.parse(model.read()):
print('ERROR: Failed to parse the ONNX file.')
for error in range(parser.num_errors):
print(parser.get_error(error))
return None
if trt.__version__[0] >= '7':
# The actual yolov3.onnx is generated with batch size 64.
# Reshape input to batch size 1
shape = list(network.get_input(0).shape)
shape[0] = 1
network.get_input(0).shape = shape
print('Completed parsing of ONNX file')
print('Building an engine; this may take a while...')
engine = builder.build_cuda_engine(network)
print('Completed creating engine')
with open(engine_file_path, 'wb') as f:
f.write(engine.serialize())
return engine
示例8: build_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def build_engine(model_path):
with trt.Builder(TRT_LOGGER) as builder, \
builder.create_network() as network, \
trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1<<30
builder.max_batch_size = 1
with open(model_path, "rb") as f:
parser.parse(f.read())
engine = builder.build_cuda_engine(network)
return engine
示例9: get_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def get_engine(onnx_file_path, engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = 1
builder.fp16_mode = True
# Parse model file
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
engine = builder.build_cuda_engine(network)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
return build_engine()
示例10: __call__
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def __call__(self):
network = TensorRTRunnerV2.create_network(explicit_precision=self.explicit_precision)
parser = trt.OnnxParser(network, TRT_LOGGER)
success = parser.parse(self.onnx_loader().SerializeToString())
if not success:
for index in range(parser.num_errors):
logging.error(parser.get_error(index))
logging.critical("Could not parse ONNX correctly")
return network, parser
示例11: convert_onnx_model_to_trt
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def convert_onnx_model_to_trt(onnx_model_filename, trt_model_filename,
input_tensor_name, output_tensor_name,
output_data_type, max_workspace_size, max_batch_size):
"Convert an onnx_model_filename into a trt_model_filename using the given parameters"
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
TRT_VERSION_MAJOR = int(trt.__version__.split('.')[0])
with trt.Builder(TRT_LOGGER) as builder:
if TRT_VERSION_MAJOR >= 7:
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
network = builder.create_network(flag)
else:
network = builder.create_network()
parser = trt.OnnxParser(network, TRT_LOGGER)
if (output_data_type=='fp32'):
print('Converting into fp32 (default), max_batch_size={}'.format(max_batch_size))
builder.fp16_mode = False
else:
if not builder.platform_has_fast_fp16:
print('Warning: This platform is not optimized for fast fp16 mode')
builder.fp16_mode = True
print('Converting into fp16, max_batch_size={}'.format(max_batch_size))
builder.max_workspace_size = max_workspace_size
builder.max_batch_size = max_batch_size
with open(onnx_model_filename, 'rb') as onnx_model_file:
onnx_model = onnx_model_file.read()
if not parser.parse(onnx_model):
raise RuntimeError("Onnx model parsing from {} failed. Error: {}".format(onnx_model_filename, parser.get_error(0).desc()))
if TRT_VERSION_MAJOR >= 7:
# Create an optimization profile (see Section 7.2 of https://docs.nvidia.com/deeplearning/sdk/pdf/TensorRT-Developer-Guide.pdf).
profile = builder.create_optimization_profile()
# FIXME: Hardcoded for ImageNet. The minimum/optimum/maximum dimensions of a dynamic input tensor are the same.
profile.set_shape(input_tensor_name, (1, 3, 224, 224), (max_batch_size, 3, 224, 224), (max_batch_size, 3, 224, 224))
config = builder.create_builder_config()
config.add_optimization_profile(profile)
trt_model_object = builder.build_engine(network, config)
else:
trt_model_object = builder.build_cuda_engine(network)
try:
serialized_trt_model = trt_model_object.serialize()
with open(trt_model_filename, "wb") as trt_model_file:
trt_model_file.write(serialized_trt_model)
except:
raise RuntimeError('Cannot serialize or write TensorRT engine to file {}.'.format(trt_model_filename))
示例12: build_engine
# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import OnnxParser [as 别名]
def build_engine(
onnx_path,
seq_len=192,
max_seq_len=256,
batch_size=8,
max_batch_size=64,
trt_fp16=True,
verbose=True,
max_workspace_size=None,
encoder=True,
):
"""Builds TRT engine from an ONNX file
Note that network output 1 is unmarked so that the engine will not use
vestigial length calculations associated with masked_fill
"""
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger(trt.Logger.WARNING)
builder = trt.Builder(TRT_LOGGER)
builder.max_batch_size = max_batch_size
with open(onnx_path, 'rb') as model_fh:
model = model_fh.read()
model_onnx = onnx.load_model_from_string(model)
input_feats = model_onnx.graph.input[0].type.tensor_type.shape.dim[1].dim_value
input_name = model_onnx.graph.input[0].name
if trt_fp16:
builder.fp16_mode = True
print("Optimizing for FP16")
config_flags = 1 << int(trt.BuilderFlag.FP16) # | 1 << int(trt.BuilderFlag.STRICT_TYPES)
else:
config_flags = 0
builder.max_workspace_size = max_workspace_size if max_workspace_size else (4 * 1024 * 1024 * 1024)
config = builder.create_builder_config()
config.flags = config_flags
profile = builder.create_optimization_profile()
profile.set_shape(
input_name,
min=(1, input_feats, seq_len),
opt=(batch_size, input_feats, seq_len),
max=(max_batch_size, input_feats, max_seq_len),
)
config.add_optimization_profile(profile)
explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(explicit_batch)
with trt.OnnxParser(network, TRT_LOGGER) as parser:
parsed = parser.parse(model)
print("Parsing returned ", parsed)
return builder.build_engine(network, config=config)