当前位置: 首页>>代码示例>>Python>>正文


Python tensorrt.Logger方法代码示例

本文整理汇总了Python中tensorrt.Logger方法的典型用法代码示例。如果您正苦于以下问题:Python tensorrt.Logger方法的具体用法?Python tensorrt.Logger怎么用?Python tensorrt.Logger使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorrt的用法示例。


在下文中一共展示了tensorrt.Logger方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def __init__(self, engine_path, input_names=None, output_names=None, final_shapes=None):
        
        # load engine
        self.logger = trt.Logger()
        self.runtime = trt.Runtime(self.logger)
        with open(engine_path, 'rb') as f:
            self.engine = self.runtime.deserialize_cuda_engine(f.read())
        self.context = self.engine.create_execution_context()
        
        if input_names is None:
            self.input_names = self._trt_input_names()
        else:
            self.input_names = input_names
            
        if output_names is None:
            self.output_names = self._trt_output_names()
        else:
            self.output_names = output_names
            
        self.final_shapes = final_shapes 
开发者ID:tensorboy,项目名称:centerpose,代码行数:22,代码来源:tensorrt_model.py

示例2: __init__

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def __init__(self, model, input_shape, output_layout=7):
        """Initialize TensorRT plugins, engine and conetxt."""
        self.model = model
        self.input_shape = input_shape
        self.output_layout = output_layout
        self.trt_logger = trt.Logger(trt.Logger.INFO)
        self._load_plugins()
        self.engine = self._load_engine()

        self.host_inputs = []
        self.cuda_inputs = []
        self.host_outputs = []
        self.cuda_outputs = []
        self.bindings = []
        self.stream = cuda.Stream()
        self.context = self._create_context() 
开发者ID:jkjung-avt,项目名称:tensorrt_demos,代码行数:18,代码来源:ssd.py

示例3: __init__

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def __init__(self,
                 max_batchsize,
                 workspace,
                 dtype=trt.float32,
                 builder_config_fn=None,
                 net_post_fn=None,
                 input_names=None,
                 verbose=False):
        super().__init__()
        self.max_batchsize = max_batchsize
        self.workspace = workspace
        self.logger = trt.Logger(trt.Logger.WARNING)
        self.built = False
        self.graph_pth = None
        self.refit_weight_dict = {}
        self.engine = None
        self.ctx = None
        self.output_shapes = None
        self.output_names = None
        self.need_refit = False
        self.verbose = verbose
        self.builder_config_fn = builder_config_fn
        self.input_names = input_names
        self.net_post_fn = net_post_fn 
开发者ID:traveller59,项目名称:torch2trt,代码行数:26,代码来源:module.py

示例4: build_engine

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def build_engine(onnx, verbose=False):
    """Build TensorRT engine from the ONNX model."""
    TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(*EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 30  # 1GB
        builder.max_batch_size = MAX_BATCH
        builder.fp16_mode = FP16_MODE
        with open(onnx, 'rb') as model:
            if not parser.parse(model.read()):
                print('ERROR: Failed to parse the ONNX file.')
                for error in range(parser.num_errors):
                    print(parser.get_error(error))
                return None
        if trt.__version__[0] >= '7':
            # set input to batch size 1
            shape = list(network.get_input(0).shape)
            shape[0] = 1
            network.get_input(0).shape = shape
        return builder.build_cuda_engine(network) 
开发者ID:jkjung-avt,项目名称:keras_imagenet,代码行数:21,代码来源:build_engine.py

示例5: _load_from_state_dict

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        engine_bytes = state_dict[prefix + "engine"]

        with trt.Logger() as logger, trt.Runtime(logger) as runtime:
            self.engine = runtime.deserialize_cuda_engine(engine_bytes)
            self.context = self.engine.create_execution_context()

        self.input_names = state_dict[prefix + "input_names"]
        self.output_names = state_dict[prefix + "output_names"] 
开发者ID:NVIDIA-AI-IOT,项目名称:torch2trt,代码行数:20,代码来源:torch2trt.py

示例6: __init__

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def __init__(self):
        self.colors = np.random.uniform(0, 255, size=(100, 3))
        self.input_shape = INPUT_HW
        self.trt_logger = trt.Logger(trt.Logger.INFO)
        self._load_plugins()
        self.engine = self._load_engine()

        self.host_inputs = []
        self.cuda_inputs = []
        self.host_outputs = []
        self.cuda_outputs = []
        self.bindings = []
        self.stream = cuda.Stream()
        self.context = self._create_context() 
开发者ID:cristianpb,项目名称:object-detection,代码行数:16,代码来源:ssd_trt_detection.py

示例7: main

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('model', type=str, choices=list(MODEL_SPECS.keys()))
    args = parser.parse_args()

    # initialize
    if trt.__version__[0] < '7':
        ctypes.CDLL(LIB_FILE)
    TRT_LOGGER = trt.Logger(trt.Logger.INFO)
    trt.init_libnvinfer_plugins(TRT_LOGGER, '')

    # compile the model into TensorRT engine
    model = args.model
    spec = MODEL_SPECS[model]
    dynamic_graph = add_plugin(
        gs.DynamicGraph(spec['input_pb']),
        model,
        spec)
    _ = uff.from_tensorflow(
        dynamic_graph.as_graph_def(),
        output_nodes=['NMS'],
        output_filename=spec['tmp_uff'],
        text=True,
        debug_mode=DEBUG_UFF)
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:
        builder.max_workspace_size = 1 << 28
        builder.max_batch_size = 1
        builder.fp16_mode = True

        parser.register_input('Input', INPUT_DIMS)
        parser.register_output('MarkOutput_0')
        parser.parse(spec['tmp_uff'], network)
        engine = builder.build_cuda_engine(network)

        buf = engine.serialize()
        with open(spec['output_bin'], 'wb') as f:
            f.write(buf) 
开发者ID:jkjung-avt,项目名称:tensorrt_demos,代码行数:39,代码来源:build_engine.py

示例8: build_engine

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def build_engine(onnx_file_path, engine_file_path, verbose=False):
    """Takes an ONNX file and creates a TensorRT engine."""
    TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(*EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 28
        builder.max_batch_size = 1
        builder.fp16_mode = True
        #builder.strict_type_constraints = True

        # Parse model file
        print('Loading ONNX file from path {}...'.format(onnx_file_path))
        with open(onnx_file_path, 'rb') as model:
            print('Beginning ONNX file parsing')
            if not parser.parse(model.read()):
                print('ERROR: Failed to parse the ONNX file.')
                for error in range(parser.num_errors):
                    print(parser.get_error(error))
                return None
        if trt.__version__[0] >= '7':
            # The actual yolov3.onnx is generated with batch size 64.
            # Reshape input to batch size 1
            shape = list(network.get_input(0).shape)
            shape[0] = 1
            network.get_input(0).shape = shape
        print('Completed parsing of ONNX file')

        print('Building an engine; this may take a while...')
        engine = builder.build_cuda_engine(network)
        print('Completed creating engine')
        with open(engine_file_path, 'wb') as f:
            f.write(engine.serialize())
        return engine 
开发者ID:jkjung-avt,项目名称:tensorrt_demos,代码行数:34,代码来源:onnx_to_tensorrt.py

示例9: convert_caffe_model_to_trt

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def convert_caffe_model_to_trt(caffe_weights_file, caffe_deploy_file, trt_model_filename,
                               output_tensor_name, output_data_type, max_workspace_size, max_batch_size):
    "Convert a pair of (caffe_weights_file,caffe_deploy_file) into a trt_model_file using the given parameters"

    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.CaffeParser() as parser:

        if (output_data_type=='fp16'):
            if not builder.platform_has_fast_fp16:
                print('Warning: This platform is not optimized for fast fp16 mode')

            builder.fp16_mode = True
            print('Converting into fp16, max_batch_size={}'.format(max_batch_size))
        else:
            print('Converting into fp32 (default), max_batch_size={}'.format(max_batch_size))

        builder.max_workspace_size  = max_workspace_size
        builder.max_batch_size      = max_batch_size

        model_tensors       = parser.parse(deploy=caffe_deploy_file, model=caffe_weights_file, network=network, dtype=trt.float32)
        network.mark_output(model_tensors.find(output_tensor_name))

        trt_model_object    = builder.build_cuda_engine(network)

        try:
            serialized_trt_model = trt_model_object.serialize()
            with open(trt_model_filename, "wb") as trt_model_file:
                trt_model_file.write(serialized_trt_model)
        except:
            print('Error: cannot serialize or write TensorRT engine to file {}.'.format(trt_model_filename)) 
开发者ID:ctuning,项目名称:ck-tensorrt,代码行数:33,代码来源:caffe2tensorrt_model_converter.py

示例10: set_trt_logging_level

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def set_trt_logging_level(sev):
    global TRT_LOGGER
    if sev == logging.DEBUG:
        logging.min_severity = trt.Logger.INFO
    elif sev == logging.WARNING:
        logging.min_severity = trt.Logger.WARNING
    elif sev == logging.ERROR:
        logging.min_severity = trt.Logger.ERROR
    elif sev == logging.CRITICAL:
        logging.min_severity = trt.Logger.INTERNAL_ERROR 
开发者ID:NVIDIA,项目名称:NeMo,代码行数:12,代码来源:tensorrt_runner.py

示例11: infer_with_trt

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def infer_with_trt(img, model):
    """Inference the image with TensorRT engine."""
    import pycuda.autoinit
    import pycuda.driver as cuda
    import tensorrt as trt

    TRT_LOGGER = trt.Logger(trt.Logger.INFO)
    with open(model, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())
    assert len(engine) == 2, 'ERROR: bad number of bindings'
    host_input, cuda_input, host_output, cuda_output = init_trt_buffers(
        cuda, trt, engine)
    stream = cuda.Stream()
    context = engine.create_execution_context()
    context.set_binding_shape(0, (1, 224, 224, 3))
    np.copyto(host_input, img.ravel())
    cuda.memcpy_htod_async(cuda_input, host_input, stream)
    if trt.__version__[0] >= '7':
        context.execute_async_v2(bindings=[int(cuda_input), int(cuda_output)],
                                 stream_handle=stream.handle)
    else:
        context.execute_async(bindings=[int(cuda_input), int(cuda_output)],
                              stream_handle=stream.handle)
    cuda.memcpy_dtoh_async(host_output, cuda_output, stream)
    stream.synchronize()
    return host_output 
开发者ID:jkjung-avt,项目名称:keras_imagenet,代码行数:28,代码来源:predict_image.py

示例12: __init__

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def __init__(self, model, input_shape, category_num=80):
        """Initialize TensorRT plugins, engine and conetxt."""
        self.model = model
        self.input_shape = input_shape
        h, w = input_shape
        # filters count
        filters = (category_num + 5) * 3
        if 'tiny' in model:
            self.output_shapes = [(1, filters, h // 32, w // 32),
                                  (1, filters, h // 16, w // 16)]
        else:
            self.output_shapes = [(1, filters, h // 32, w // 32),
                                  (1, filters, h // 16, w // 16),
                                  (1, filters, h //  8, w //  8)]
        if 'tiny' in model:
            postprocessor_args = {
                # A list of 2 three-dimensional tuples for the Tiny YOLO masks
                'yolo_masks': [(3, 4, 5), (0, 1, 2)],
                # A list of 6 two-dimensional tuples for the Tiny YOLO anchors
                'yolo_anchors': [(10, 14), (23, 27), (37, 58),
                                 (81, 82), (135, 169), (344, 319)],
                # Threshold for non-max suppression algorithm, float
                # value between 0 and 1
                'nms_threshold': 0.5,
                'yolo_input_resolution': input_shape,
                'category_num': category_num
            }
        else:
            postprocessor_args = {
                # A list of 3 three-dimensional tuples for the YOLO masks
                'yolo_masks': [(6, 7, 8), (3, 4, 5), (0, 1, 2)],
                # A list of 9 two-dimensional tuples for the YOLO anchors
                'yolo_anchors': [(10, 13), (16, 30), (33, 23),
                                 (30, 61), (62, 45), (59, 119),
                                 (116, 90), (156, 198), (373, 326)],
                # Threshold for non-max suppression algorithm, float
                # value between 0 and 1
                # between 0 and 1
                'nms_threshold': 0.5,
                'yolo_input_resolution': input_shape,
                'category_num': category_num
            }
        self.postprocessor = PostprocessYOLO(**postprocessor_args)

        self.trt_logger = trt.Logger(trt.Logger.INFO)
        self.engine = self._load_engine()
        self.context = self._create_context()
        self.inputs, self.outputs, self.bindings, self.stream = \
            allocate_buffers(self.engine)
        self.inference_fn = do_inference if trt.__version__[0] < '7' \
                                         else do_inference_v2 
开发者ID:jkjung-avt,项目名称:tensorrt_demos,代码行数:53,代码来源:yolov3.py

示例13: convert_tf_model_to_trt

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def convert_tf_model_to_trt(tf_model_filename, trt_model_filename,
                               model_data_layout, input_layer_name, input_height, input_width,
                               output_layer_name, output_data_type, max_workspace_size, max_batch_size):
    "Convert an tf_model_filename into a trt_model_filename using the given parameters"

    uff_model = uff.from_tensorflow_frozen_model(tf_model_filename)

    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:

        if model_data_layout == 'NHWC':
            parser.register_input(input_layer_name, [input_height, input_width, 3], trt.UffInputOrder.NHWC)
        else:
            parser.register_input(input_layer_name, [3, input_height, input_width], trt.UffInputOrder.NCHW)

        parser.register_output(output_layer_name)

        if not parser.parse_buffer(uff_model, network):
            raise RuntimeError("UFF model parsing (originally from {}) failed. Error: {}".format(tf_model_filename, parser.get_error(0).desc()))

        if (output_data_type=='fp32'):
            print('Converting into fp32 (default), max_batch_size={}'.format(max_batch_size))
        else:
            if not builder.platform_has_fast_fp16:
                print('Warning: This platform is not optimized for fast fp16 mode')

            builder.fp16_mode = True
            print('Converting into fp16, max_batch_size={}'.format(max_batch_size))

        builder.max_workspace_size  = max_workspace_size
        builder.max_batch_size      = max_batch_size


        trt_model_object    = builder.build_cuda_engine(network)

        try:
            serialized_trt_model = trt_model_object.serialize()
            with open(trt_model_filename, "wb") as trt_model_file:
                trt_model_file.write(serialized_trt_model)
        except:
            raise RuntimeError('Cannot serialize or write TensorRT engine to file {}.'.format(trt_model_filename)) 
开发者ID:ctuning,项目名称:ck-tensorrt,代码行数:44,代码来源:tf2tensorrt_model_converter.py

示例14: convert_onnx_model_to_trt

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def convert_onnx_model_to_trt(onnx_model_filename, trt_model_filename,
                              input_tensor_name, output_tensor_name,
                              output_data_type, max_workspace_size, max_batch_size):
    "Convert an onnx_model_filename into a trt_model_filename using the given parameters"

    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

    TRT_VERSION_MAJOR = int(trt.__version__.split('.')[0])

    with trt.Builder(TRT_LOGGER) as builder:
        if TRT_VERSION_MAJOR >= 7:
            flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
            network = builder.create_network(flag)
        else:
            network = builder.create_network()
        parser = trt.OnnxParser(network, TRT_LOGGER)

        if (output_data_type=='fp32'):
            print('Converting into fp32 (default), max_batch_size={}'.format(max_batch_size))
            builder.fp16_mode = False
        else:
            if not builder.platform_has_fast_fp16:
                print('Warning: This platform is not optimized for fast fp16 mode')

            builder.fp16_mode = True
            print('Converting into fp16, max_batch_size={}'.format(max_batch_size))

        builder.max_workspace_size  = max_workspace_size
        builder.max_batch_size      = max_batch_size

        with open(onnx_model_filename, 'rb') as onnx_model_file:
            onnx_model = onnx_model_file.read()

        if not parser.parse(onnx_model):
            raise RuntimeError("Onnx model parsing from {} failed. Error: {}".format(onnx_model_filename, parser.get_error(0).desc()))

        if TRT_VERSION_MAJOR >= 7:
            # Create an optimization profile (see Section 7.2 of https://docs.nvidia.com/deeplearning/sdk/pdf/TensorRT-Developer-Guide.pdf).
            profile = builder.create_optimization_profile()
            # FIXME: Hardcoded for ImageNet. The minimum/optimum/maximum dimensions of a dynamic input tensor are the same.
            profile.set_shape(input_tensor_name, (1, 3, 224, 224), (max_batch_size, 3, 224, 224), (max_batch_size, 3, 224, 224))

            config = builder.create_builder_config()
            config.add_optimization_profile(profile)

            trt_model_object = builder.build_engine(network, config)
        else:
            trt_model_object = builder.build_cuda_engine(network)

        try:
            serialized_trt_model = trt_model_object.serialize()
            with open(trt_model_filename, "wb") as trt_model_file:
                trt_model_file.write(serialized_trt_model)
        except:
            raise RuntimeError('Cannot serialize or write TensorRT engine to file {}.'.format(trt_model_filename)) 
开发者ID:ctuning,项目名称:ck-tensorrt,代码行数:57,代码来源:onnx2tensorrt_model_converter.py

示例15: build_engine

# 需要导入模块: import tensorrt [as 别名]
# 或者: from tensorrt import Logger [as 别名]
def build_engine(
    onnx_path,
    seq_len=192,
    max_seq_len=256,
    batch_size=8,
    max_batch_size=64,
    trt_fp16=True,
    verbose=True,
    max_workspace_size=None,
    encoder=True,
):
    """Builds TRT engine from an ONNX file
    Note that network output 1 is unmarked so that the engine will not use
    vestigial length calculations associated with masked_fill
    """
    TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger(trt.Logger.WARNING)
    builder = trt.Builder(TRT_LOGGER)
    builder.max_batch_size = max_batch_size

    with open(onnx_path, 'rb') as model_fh:
        model = model_fh.read()

    model_onnx = onnx.load_model_from_string(model)
    input_feats = model_onnx.graph.input[0].type.tensor_type.shape.dim[1].dim_value
    input_name = model_onnx.graph.input[0].name

    if trt_fp16:
        builder.fp16_mode = True
        print("Optimizing for FP16")
        config_flags = 1 << int(trt.BuilderFlag.FP16)  # | 1 << int(trt.BuilderFlag.STRICT_TYPES)
    else:
        config_flags = 0
    builder.max_workspace_size = max_workspace_size if max_workspace_size else (4 * 1024 * 1024 * 1024)

    config = builder.create_builder_config()
    config.flags = config_flags

    profile = builder.create_optimization_profile()
    profile.set_shape(
        input_name,
        min=(1, input_feats, seq_len),
        opt=(batch_size, input_feats, seq_len),
        max=(max_batch_size, input_feats, max_seq_len),
    )
    config.add_optimization_profile(profile)

    explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    network = builder.create_network(explicit_batch)

    with trt.OnnxParser(network, TRT_LOGGER) as parser:
        parsed = parser.parse(model)
        print("Parsing returned ", parsed)
        return builder.build_engine(network, config=config) 
开发者ID:NVIDIA,项目名称:NeMo,代码行数:55,代码来源:export_jasper_onnx_to_trt.py


注:本文中的tensorrt.Logger方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。