当前位置: 首页>>代码示例>>Python>>正文


Python imgaug.Lighting方法代码示例

本文整理汇总了Python中tensorpack.imgaug.Lighting方法的典型用法代码示例。如果您正苦于以下问题:Python imgaug.Lighting方法的具体用法?Python imgaug.Lighting怎么用?Python imgaug.Lighting使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorpack.imgaug的用法示例。


在下文中一共展示了imgaug.Lighting方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fbresnet_augmentor

# 需要导入模块: from tensorpack import imgaug [as 别名]
# 或者: from tensorpack.imgaug import Lighting [as 别名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            # It's OK to remove the following augs if your CPU is not fast enough.
            # Removing brightness/contrast/saturation does not have a significant effect on accuracy.
            # Removing lighting leads to a tiny drop in accuracy.
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
开发者ID:huawei-noah,项目名称:ghostnet,代码行数:34,代码来源:imagenet_utils.py

示例2: fbresnet_augmentor

# 需要导入模块: from tensorpack import imgaug [as 别名]
# 或者: from tensorpack.imgaug import Lighting [as 别名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    interpolation = cv2.INTER_LINEAR
    if isTrain:
        """
        Sec 5.1:
        We use scale and aspect ratio data augmentation [35] as
        in [12]. The network input image is a 224×224 pixel random
        crop from an augmented image or its horizontal flip.
        """
        augmentors = [
            imgaug.GoogleNetRandomCropAndResize(interp=interpolation),
            # It's OK to remove the following augs if your CPU is not fast enough.
            # Removing brightness/contrast/saturation does not have a significant effect on accuracy.
            # Removing lighting leads to a tiny drop in accuracy.
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), rgb=False, clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, interp=interpolation),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
开发者ID:tensorpack,项目名称:benchmarks,代码行数:41,代码来源:imagenet_utils.py

示例3: fbresnet_augmentor

# 需要导入模块: from tensorpack import imgaug [as 别名]
# 或者: from tensorpack.imgaug import Lighting [as 别名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
开发者ID:qinenergy,项目名称:webvision-2.0-benchmarks,代码行数:31,代码来源:imagenet_utils.py

示例4: fbresnet_augmentor

# 需要导入模块: from tensorpack import imgaug [as 别名]
# 或者: from tensorpack.imgaug import Lighting [as 别名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            # It's OK to remove the following augs if your CPU is not fast enough.
            # Removing brightness/contrast/saturation does not have a significant effect on accuracy.
            # Removing lighting leads to a tiny drop in accuracy.
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((DEFAULT_IMAGE_SHAPE, DEFAULT_IMAGE_SHAPE)),
        ]
    return augmentors 
开发者ID:microsoft,项目名称:LQ-Nets,代码行数:34,代码来源:imagenet_utils.py

示例5: fbresnet_augmentor

# 需要导入模块: from tensorpack import imgaug [as 别名]
# 或者: from tensorpack.imgaug import Lighting [as 别名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors
#####################################################################################################
##################################################################################################### 
开发者ID:BayesWatch,项目名称:sequential-imagenet-dataloader,代码行数:33,代码来源:data.py

示例6: get_augmentations

# 需要导入模块: from tensorpack import imgaug [as 别名]
# 或者: from tensorpack.imgaug import Lighting [as 别名]
def get_augmentations(is_train):
    if is_train:
        augmentors = [
            GoogleNetResize(crop_area_fraction=0.76, target_shape=224),     # TODO : 76% or 49%?
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=True),
                 imgaug.Contrast((0.6, 1.4), clip=True),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
开发者ID:ildoonet,项目名称:tf-mobilenet-v2,代码行数:28,代码来源:data_helper.py


注:本文中的tensorpack.imgaug.Lighting方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。