本文整理汇总了Python中tensorflow_metadata.proto.v0.schema_pb2.Schema方法的典型用法代码示例。如果您正苦于以下问题:Python schema_pb2.Schema方法的具体用法?Python schema_pb2.Schema怎么用?Python schema_pb2.Schema使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow_metadata.proto.v0.schema_pb2
的用法示例。
在下文中一共展示了schema_pb2.Schema方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_validate_stats_invalid_environment
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_validate_stats_invalid_environment(self):
statistics = statistics_pb2.DatasetFeatureStatisticsList()
statistics.datasets.extend([statistics_pb2.DatasetFeatureStatistics()])
schema = text_format.Parse(
"""
default_environment: "TRAINING"
default_environment: "SERVING"
feature {
name: "label"
not_in_environment: "SERVING"
value_count { min: 1 max: 1 }
presence { min_count: 1 }
type: BYTES
}
""", schema_pb2.Schema())
with self.assertRaisesRegexp(
ValueError, 'Environment.*not found in the schema.*'):
_ = validation_api.validate_statistics(statistics, schema,
environment='INVALID')
示例2: test_get_feature_using_path
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_get_feature_using_path(self):
schema = text_format.Parse(
"""
feature {
name: "feature1"
type: STRUCT
struct_domain {
feature {
name: "sub_feature1"
}
}
}
""", schema_pb2.Schema())
sub_feature1 = schema_util.get_feature(
schema, types.FeaturePath(['feature1', 'sub_feature1']))
self.assertIs(sub_feature1, schema.feature[0].struct_domain.feature[0])
示例3: test_get_string_domain_schema_level_domain
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_get_string_domain_schema_level_domain(self):
schema = text_format.Parse(
"""
string_domain {
name: "domain1"
}
string_domain {
name: "domain2"
}
feature {
name: "feature1"
domain: "domain2"
}
""", schema_pb2.Schema())
domain2 = schema_util.get_domain(schema, 'feature1')
self.assertIsInstance(domain2, schema_pb2.StringDomain)
self.assertEqual(domain2.name, 'domain2')
# Check to verify that we are operating on the same domain object.
self.assertIs(domain2, schema_util.get_domain(schema, 'feature1'))
示例4: test_get_string_domain_feature_level_domain
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_get_string_domain_feature_level_domain(self):
schema = text_format.Parse(
"""
string_domain {
name: "domain2"
}
feature {
name: "feature1"
string_domain {
name: "domain1"
}
}
""", schema_pb2.Schema())
domain1 = schema_util.get_domain(schema, 'feature1')
self.assertIsInstance(domain1, schema_pb2.StringDomain)
self.assertEqual(domain1.name, 'domain1')
# Check to verify that we are operating on the same domain object.
self.assertIs(domain1, schema_util.get_domain(schema, 'feature1'))
示例5: test_get_int_domain_feature_level_domain
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_get_int_domain_feature_level_domain(self):
schema = text_format.Parse(
"""
feature {
name: "feature1"
int_domain {
name: "domain1"
}
}
""", schema_pb2.Schema())
domain1 = schema_util.get_domain(schema, 'feature1')
self.assertIsInstance(domain1, schema_pb2.IntDomain)
self.assertEqual(domain1.name, 'domain1')
# Check to verify that we are operating on the same domain object.
self.assertIs(domain1, schema_util.get_domain(schema, 'feature1'))
示例6: test_get_bool_domain_feature_level_domain
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_get_bool_domain_feature_level_domain(self):
schema = text_format.Parse(
"""
feature {
name: "feature1"
bool_domain {
name: "domain1"
}
}
""", schema_pb2.Schema())
domain1 = schema_util.get_domain(schema, 'feature1')
self.assertIsInstance(domain1, schema_pb2.BoolDomain)
self.assertEqual(domain1.name, 'domain1')
# Check to verify that we are operating on the same domain object.
self.assertIs(domain1, schema_util.get_domain(schema, 'feature1'))
示例7: test_get_domain_using_path
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_get_domain_using_path(self):
schema = text_format.Parse(
"""
feature {
name: "feature1"
type: STRUCT
struct_domain {
feature {
name: "sub_feature1"
bool_domain {
name: "domain1"
}
}
}
}
""", schema_pb2.Schema())
domain1 = schema_util.get_domain(
schema, types.FeaturePath(['feature1', 'sub_feature1']))
self.assertIs(
domain1, schema.feature[0].struct_domain.feature[0].bool_domain)
示例8: write_schema_text
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def write_schema_text(schema: schema_pb2.Schema, output_path: Text) -> None:
"""Writes input schema to a file in text format.
Args:
schema: A Schema protocol buffer.
output_path: File path to write the input schema.
Raises:
TypeError: If the input schema is not of the expected type.
"""
if not isinstance(schema, schema_pb2.Schema):
raise TypeError('schema is of type %s, should be a Schema proto.' %
type(schema).__name__)
schema_text = text_format.MessageToString(schema)
io_util.write_string_to_file(output_path, schema_text)
示例9: get_all_leaf_features
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def get_all_leaf_features(
schema: schema_pb2.Schema
) -> List[Tuple[types.FeaturePath, schema_pb2.Feature]]:
"""Returns all leaf features in a schema."""
def _recursion_helper(
parent_path: types.FeaturePath,
feature_container: Iterable[schema_pb2.Feature],
result: List[Tuple[types.FeaturePath, schema_pb2.Feature]]):
for f in feature_container:
feature_path = parent_path.child(f.name)
if f.type != schema_pb2.STRUCT:
result.append((feature_path, f))
else:
_recursion_helper(feature_path, f.struct_domain.feature, result)
result = []
_recursion_helper(types.FeaturePath([]), schema.feature, result)
return result
示例10: from_json
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def from_json(cls, options_json: Text) -> 'StatsOptions':
"""Construct an instance of stats options from a JSON representation.
Args:
options_json: A JSON representation of the __dict__ attribute of a
StatsOptions instance.
Returns:
A StatsOptions instance constructed by setting the __dict__ attribute to
the deserialized value of options_json.
"""
options_dict = json.loads(options_json)
if 'schema_json' in options_dict:
options_dict['_schema'] = json_format.Parse(options_dict['schema_json'],
schema_pb2.Schema())
del options_dict['schema_json']
options = cls()
options.__dict__ = options_dict
return options
示例11: _schema_has_sparse_features
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def _schema_has_sparse_features(schema: schema_pb2.Schema) -> bool:
"""Returns whether there are any sparse features in the specified schema."""
def _has_sparse_features(
feature_container: Iterable[schema_pb2.Feature]
) -> bool:
"""Helper function used to determine whether there are sparse features."""
for f in feature_container:
if isinstance(f, schema_pb2.SparseFeature):
return True
if f.type == schema_pb2.STRUCT:
if f.struct_domain.sparse_feature:
return True
return _has_sparse_features(f.struct_domain.feature)
return False
if schema.sparse_feature:
return True
return _has_sparse_features(schema.feature)
示例12: __init__
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def __init__(self,
schema: schema_pb2.Schema,
name: Text = 'WeightedFeatureStatsGenerator') -> None:
constituents = []
for weighted_feature in schema.weighted_feature:
weight = types.FeaturePath.from_proto(weighted_feature.weight_feature)
value = types.FeaturePath.from_proto(weighted_feature.feature)
component_paths = [weight, value]
constituents.append(length_diff_generator.LengthDiffGenerator(
weight, value, required_paths=component_paths))
constituents.append(count_missing_generator.CountMissingGenerator(
value, required_paths=component_paths))
constituents.append(count_missing_generator.CountMissingGenerator(
weight, required_paths=component_paths))
super(WeightedFeatureStatsGenerator, self).__init__(name, constituents,
schema)
示例13: _get_all_sparse_features
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def _get_all_sparse_features(
schema: schema_pb2.Schema
) -> List[Tuple[types.FeaturePath, schema_pb2.SparseFeature]]:
"""Returns all sparse features in a schema."""
def _recursion_helper(
parent_path: types.FeaturePath, container: Union[schema_pb2.Schema,
schema_pb2.StructDomain]
) -> List[Tuple[types.FeaturePath, schema_pb2.SparseFeature]]:
"""Helper function that is used in finding sparse features in a tree."""
result = []
for sf in container.sparse_feature:
# Sparse features do not have a struct_domain, so they cannot be parent
# features. Thus, once this reaches a sparse feature, add it to the
# result.
result.append((parent_path.child(sf.name), sf))
for f in container.feature:
if f.type == schema_pb2.STRUCT:
result.extend(
_recursion_helper(parent_path.child(f.name), f.struct_domain))
return result
return _recursion_helper(types.FeaturePath([]), schema)
示例14: __init__
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def __init__(self,
y_path: types.FeaturePath,
schema: Optional[schema_pb2.Schema] = None,
x_paths: Optional[Iterable[types.FeaturePath]] = None,
y_boundaries: Optional[Sequence[float]] = None,
min_x_count: int = 0,
top_k_per_y: Optional[int] = None,
bottom_k_per_y: Optional[int] = None,
weight_column_name: Optional[Text] = None,
output_custom_stats: Optional[bool] = False,
name: Text = 'LiftStatsGenerator') -> None:
super(LiftStatsGenerator, self).__init__(
name,
ptransform=_UnweightedAndWeightedLiftStatsGenerator(
weight_column_name=weight_column_name,
schema=schema,
y_path=y_path,
x_paths=x_paths,
y_boundaries=y_boundaries,
min_x_count=min_x_count,
top_k_per_y=top_k_per_y,
bottom_k_per_y=bottom_k_per_y,
output_custom_stats=output_custom_stats,
name=name),
schema=schema)
示例15: test_lift_string_y_with_boundaries
# 需要导入模块: from tensorflow_metadata.proto.v0 import schema_pb2 [as 别名]
# 或者: from tensorflow_metadata.proto.v0.schema_pb2 import Schema [as 别名]
def test_lift_string_y_with_boundaries(self):
schema = text_format.Parse(
"""
feature {
name: 'categorical_x'
type: BYTES
}
feature {
name: 'string_y'
type: BYTES
}
""", schema_pb2.Schema())
with self.assertRaisesRegex(ValueError,
r'Boundaries cannot be applied to a '
'categorical y_path.*'):
lift_stats_generator.LiftStatsGenerator(
schema=schema,
y_path=types.FeaturePath(['string_y']),
y_boundaries=[1, 2, 3])