本文整理汇总了Python中tensorflow_hub.KerasLayer方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow_hub.KerasLayer方法的具体用法?Python tensorflow_hub.KerasLayer怎么用?Python tensorflow_hub.KerasLayer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow_hub
的用法示例。
在下文中一共展示了tensorflow_hub.KerasLayer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def __init__(
self,
input_shape=(224, 224, 3),
model_url='https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4',
labels_url='https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt',
trainable=False
):
self.model_url = model_url
self.input_shape = input_shape
self.labels_url = labels_url
self.model = hub.KerasLayer(
model_url, input_shape=input_shape, trainable=trainable)
self.classifier = tf.keras.Sequential([self.model])
labels_filename = labels_url.split(
'/')[-1]
labels_path = tf.keras.utils.get_file(labels_filename, labels_url)
self.labels = np.array(open(labels_path).read().splitlines())
示例2: testRegularizationLoss
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testRegularizationLoss(self, model_format):
export_dir = os.path.join(self.get_temp_dir(), "half-plus-one")
_dispatch_model_format(model_format, _save_half_plus_one_model,
_save_half_plus_one_hub_module_v1, export_dir)
# Import the half-plus-one model into a consumer model.
inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
imported = hub.KerasLayer(export_dir, trainable=False)
outp = imported(inp)
model = tf.keras.Model(inp, outp)
# When untrainable, the layer does not contribute regularization losses.
self.assertAllEqual(model.losses, np.array([0.], dtype=np.float32))
# When trainable (even set after the fact), the layer forwards its losses.
imported.trainable = True
self.assertAllEqual(model.losses, np.array([0.0025], dtype=np.float32))
# This can be toggled repeatedly.
imported.trainable = False
self.assertAllEqual(model.losses, np.array([0.], dtype=np.float32))
imported.trainable = True
self.assertAllEqual(model.losses, np.array([0.0025], dtype=np.float32))
示例3: _output_shape_list_model_fn
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def _output_shape_list_model_fn(self, features, labels, mode, params):
inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
kwargs = {}
if "output_shape" in params:
kwargs["output_shape"] = params["output_shape"]
imported = hub.KerasLayer(params["hub_module"], **kwargs)
outp = imported(inp)
model = tf.keras.Model(inp, outp)
out_list = model(features, training=(mode == tf.estimator.ModeKeys.TRAIN))
for j, out in enumerate(out_list):
i = j+1 # Sample shapes count from one.
actual_shape = out.shape.as_list()[1:] # Without batch size.
expected_shape = [i]*i if "output_shape" in params else [None]*i
self.assertEqual(actual_shape, expected_shape)
predictions = {["one", "two", "three"][i]: out_list[i] for i in range(3)}
imported.get_config()
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions,
loss=None, train_op=None)
示例4: test_load_callable_saved_model_v2_with_signature
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def test_load_callable_saved_model_v2_with_signature(self, model_format,
signature, output_key,
as_dict):
export_dir = os.path.join(self.get_temp_dir(), "plus_one_" + model_format)
_dispatch_model_format(model_format, _save_plus_one_saved_model_v2,
_save_plus_one_hub_module_v1, export_dir)
inputs, expected_outputs = 10., 11. # Test modules perform increment op.
layer = hub.KerasLayer(
export_dir,
signature=signature,
output_key=output_key,
signature_outputs_as_dict=as_dict)
output = layer(inputs)
if as_dict:
self.assertIsInstance(output, dict)
self.assertEqual(output["output_0"], expected_outputs)
else:
self.assertEqual(output, expected_outputs)
示例5: _image_size_for_module
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def _image_size_for_module(module_layer, requested_image_size=None):
"""Returns the input image size to use with the given module.
Args:
module_layer: A hub.KerasLayer initialized from a Hub module expecting
image input.
requested_image_size: An optional Python integer with the user-requested
height and width of the input image; or None.
Returns:
A tuple (height, width) of Python integers that can be used as input
image size for the given module_layer.
Raises:
ValueError: If requested_image_size is set but incompatible with the module.
ValueError: If the module does not specify a particular input size and
requested_image_size is not set.
"""
# TODO(b/139530454): Use a library helper function once available.
# The stop-gap code below assumes any concrete function backing the
# module call will accept a batch of images with the one accepted size.
module_image_size = tuple(
module_layer._func.__call__ # pylint:disable=protected-access
.concrete_functions[0].structured_input_signature[0][0].shape[1:3])
if requested_image_size is None:
if None in module_image_size:
raise ValueError("Must specify an image size because "
"the selected TF Hub module specifies none.")
else:
return module_image_size
else:
requested_image_size = tf.TensorShape(
[requested_image_size, requested_image_size])
assert requested_image_size.is_fully_defined()
if requested_image_size.is_compatible_with(module_image_size):
return tuple(requested_image_size.as_list())
else:
raise ValueError("The selected TF Hub module expects image size {}, "
"but size {} is requested".format(
module_image_size,
tuple(requested_image_size.as_list())))
示例6: make_image_classifier
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def make_image_classifier(tfhub_module, image_dir, hparams,
requested_image_size=None,
log_dir=None):
"""Builds and trains a TensorFLow model for image classification.
Args:
tfhub_module: A Python string with the handle of the Hub module.
image_dir: A Python string naming a directory with subdirectories of images,
one per class.
hparams: A HParams object with hyperparameters controlling the training.
requested_image_size: A Python integer controlling the size of images to
feed into the Hub module. If the module has a fixed input size, this
must be omitted or set to that same value.
log_dir: A directory to write logs for TensorBoard into (defaults to None,
no logs will then be written).
"""
module_layer = hub.KerasLayer(tfhub_module,
trainable=hparams.do_fine_tuning)
image_size = _image_size_for_module(module_layer, requested_image_size)
print("Using module {} with image size {}".format(
tfhub_module, image_size))
augmentation_params = dict(
rotation_range=hparams.rotation_range,
horizontal_flip=hparams.horizontal_flip,
width_shift_range=hparams.width_shift_range,
height_shift_range=hparams.height_shift_range,
shear_range=hparams.shear_range,
zoom_range=hparams.zoom_range)
train_data_and_size, valid_data_and_size, labels = _get_data_with_keras(
image_dir, image_size, hparams.batch_size, hparams.validation_split,
hparams.do_data_augmentation, augmentation_params)
print("Found", len(labels), "classes:", ", ".join(labels))
model = build_model(module_layer, hparams, image_size, len(labels))
train_result = train_model(model, hparams, train_data_and_size,
valid_data_and_size, log_dir)
return model, labels, train_result
示例7: testImageSizeForModuleWithFixedInputSize
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testImageSizeForModuleWithFixedInputSize(self):
model_dir = self._export_global_average_model(has_fixed_input_size=True)
module_layer = hub.KerasLayer(model_dir)
self.assertTupleEqual(
(self.IMAGE_SIZE, self.IMAGE_SIZE),
make_image_classifier_lib._image_size_for_module(module_layer, None))
self.assertTupleEqual(
(self.IMAGE_SIZE, self.IMAGE_SIZE),
make_image_classifier_lib._image_size_for_module(module_layer,
self.IMAGE_SIZE))
with self.assertRaisesRegex(ValueError, "image size"):
make_image_classifier_lib._image_size_for_module(
module_layer, self.IMAGE_SIZE + 1)
示例8: testImageSizeForModuleWithVariableInputSize
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testImageSizeForModuleWithVariableInputSize(self):
model_dir = self._export_global_average_model(has_fixed_input_size=False)
module_layer = hub.KerasLayer(model_dir)
self.assertTupleEqual(
(self.IMAGE_SIZE, self.IMAGE_SIZE),
make_image_classifier_lib._image_size_for_module(module_layer,
self.IMAGE_SIZE))
self.assertTupleEqual(
(2 * self.IMAGE_SIZE, 2 * self.IMAGE_SIZE),
make_image_classifier_lib._image_size_for_module(module_layer,
2 * self.IMAGE_SIZE))
with self.assertRaisesRegex(ValueError, "none"):
make_image_classifier_lib._image_size_for_module(module_layer, None)
示例9: load_embedding_fn
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def load_embedding_fn(module):
return hub.KerasLayer(module)
示例10: testBatchNormRetraining
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testBatchNormRetraining(self, save_from_keras):
"""Tests imported batch norm with trainable=True."""
export_dir = os.path.join(self.get_temp_dir(), "batch-norm")
_save_batch_norm_model(export_dir, save_from_keras=save_from_keras)
inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
imported = hub.KerasLayer(export_dir, trainable=True)
var_beta, var_gamma, var_mean, var_variance = _get_batch_norm_vars(imported)
outp = imported(inp)
model = tf.keras.Model(inp, outp)
# Retrain the imported batch norm layer on a fixed batch of inputs,
# which has mean 12.0 and some variance of a less obvious value.
# The module learns scale and offset parameters that achieve the
# mapping x --> 2*x for the observed mean and variance.
model.compile(tf.keras.optimizers.SGD(0.1),
"mean_squared_error", run_eagerly=True)
x = [[11.], [12.], [13.]]
y = [[2*xi[0]] for xi in x]
model.fit(np.array(x), np.array(y), batch_size=len(x), epochs=100)
self.assertAllClose(var_mean.numpy(), np.array([12.0]))
self.assertAllClose(var_beta.numpy(), np.array([24.0]))
self.assertAllClose(model(np.array(x, np.float32)), np.array(y))
# Evaluating the model operates batch norm in inference mode:
# - Batch statistics are ignored in favor of aggregated statistics,
# computing x --> 2*x independent of input distribution.
# - Update ops are not run, so this doesn't change over time.
for _ in range(100):
self.assertAllClose(model(np.array([[10.], [20.], [30.]], np.float32)),
np.array([[20.], [40.], [60.]]))
self.assertAllClose(var_mean.numpy(), np.array([12.0]))
self.assertAllClose(var_beta.numpy(), np.array([24.0]))
示例11: testBatchNormFreezing
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testBatchNormFreezing(self, save_from_keras):
"""Tests imported batch norm with trainable=False."""
export_dir = os.path.join(self.get_temp_dir(), "batch-norm")
_save_batch_norm_model(export_dir, save_from_keras=save_from_keras)
inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
imported = hub.KerasLayer(export_dir, trainable=False)
var_beta, var_gamma, var_mean, var_variance = _get_batch_norm_vars(imported)
dense = tf.keras.layers.Dense(
units=1,
kernel_initializer=tf.keras.initializers.Constant([[1.5]]),
use_bias=False)
outp = dense(imported(inp))
model = tf.keras.Model(inp, outp)
# Training the model to x --> 2*x leaves the batch norm layer entirely
# unchanged (both trained beta&gamma and aggregated mean&variance).
self.assertAllClose(var_beta.numpy(), np.array([0.0]))
self.assertAllClose(var_gamma.numpy(), np.array([1.0]))
self.assertAllClose(var_mean.numpy(), np.array([0.0]))
self.assertAllClose(var_variance.numpy(), np.array([1.0]))
model.compile(tf.keras.optimizers.SGD(0.1),
"mean_squared_error", run_eagerly=True)
x = [[1.], [2.], [3.]]
y = [[2*xi[0]] for xi in x]
model.fit(np.array(x), np.array(y), batch_size=len(x), epochs=20)
self.assertAllClose(var_beta.numpy(), np.array([0.0]))
self.assertAllClose(var_gamma.numpy(), np.array([1.0]))
self.assertAllClose(var_mean.numpy(), np.array([0.0]))
self.assertAllClose(var_variance.numpy(), np.array([1.0]))
self.assertAllClose(model(np.array(x, np.float32)), np.array(y))
示例12: testCustomAttributes
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testCustomAttributes(self, save_from_keras):
"""Tests custom attributes (Asset and Variable) on a SavedModel."""
_skip_if_no_tf_asset(self)
base_dir = os.path.join(self.get_temp_dir(), "custom-attributes")
export_dir = os.path.join(base_dir, "model")
temp_dir = os.path.join(base_dir, "scratch")
_save_model_with_custom_attributes(export_dir, temp_dir,
save_from_keras=save_from_keras)
imported = hub.KerasLayer(export_dir)
expected_outputs = imported.resolved_object.sample_output.value().numpy()
asset_path = imported.resolved_object.sample_input.asset_path.numpy()
with tf.io.gfile.GFile(asset_path) as f:
inputs = tf.constant([[f.read()]], dtype=tf.string)
actual_outputs = imported(inputs).numpy()
self.assertAllEqual(expected_outputs, actual_outputs)
示例13: testInputOutputDict
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testInputOutputDict(self, pass_output_shapes):
"""Tests use of input/output dicts."""
# Create a SavedModel to compute sigma=[x+y, x+2y] and maybe delta=x-y.
export_dir = os.path.join(self.get_temp_dir(), "with-dicts")
_save_model_with_dict_input_output(export_dir)
# Build a Model from it using Keras' "functional" API.
x_in = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
y_in = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
dict_in = dict(x=x_in, y=y_in)
kwargs = dict(arguments=dict(return_dict=True)) # For the SavedModel.
if pass_output_shapes:
# Shape inference works without this, but we pass it anyways to exercise
# that code path and see that map_structure is called correctly
# and calls Tensor.set_shape() with compatible values.
kwargs["output_shape"] = dict(sigma=(2,), delta=(1,))
imported = hub.KerasLayer(export_dir, **kwargs)
dict_out = imported(dict_in)
delta_out = dict_out["delta"]
sigma_out = dict_out["sigma"]
concat_out = tf.keras.layers.concatenate([delta_out, sigma_out])
model = tf.keras.Model(dict_in, [delta_out, sigma_out, concat_out])
# Test the model.
x = np.array([[11.], [22.], [33.]], dtype=np.float32)
y = np.array([[1.], [2.], [3.]], dtype=np.float32)
outputs = model(dict(x=x, y=y))
self.assertLen(outputs, 3)
delta, sigma, concat = [x.numpy() for x in outputs]
self.assertAllClose(delta,
np.array([[10.], [20.], [30.]]))
self.assertAllClose(sigma,
np.array([[12., 13.], [24., 26.], [36., 39.]]))
self.assertAllClose(
concat,
np.array([[10., 12., 13.], [20., 24., 26.], [30., 36., 39.]]))
# Test round-trip through config.
config = imported.get_config()
new_layer = hub.KerasLayer.from_config(_json_cycle(config))
if pass_output_shapes:
self.assertEqual(new_layer._output_shape, imported._output_shape)
else:
self.assertFalse(hasattr(new_layer, "_output_shape"))
示例14: testComputeOutputShape
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testComputeOutputShape(self, save_from_keras):
export_dir = os.path.join(self.get_temp_dir(), "half-plus-one")
_save_half_plus_one_model(export_dir, save_from_keras=save_from_keras)
layer = hub.KerasLayer(export_dir, output_shape=[1])
self.assertEqual([10, 1],
layer.compute_output_shape(tuple([10, 1])).as_list())
layer.get_config()
示例15: testGetConfigFromConfig
# 需要导入模块: import tensorflow_hub [as 别名]
# 或者: from tensorflow_hub import KerasLayer [as 别名]
def testGetConfigFromConfig(self, save_from_keras):
export_dir = os.path.join(self.get_temp_dir(), "half-plus-one")
_save_half_plus_one_model(export_dir, save_from_keras=save_from_keras)
layer = hub.KerasLayer(export_dir)
in_value = np.array([[10.0]], dtype=np.float32)
result = layer(in_value).numpy()
config = layer.get_config()
new_layer = hub.KerasLayer.from_config(_json_cycle(config))
new_result = new_layer(in_value).numpy()
self.assertEqual(result, new_result)