当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow_fold.TensorType方法代码示例

本文整理汇总了Python中tensorflow_fold.TensorType方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow_fold.TensorType方法的具体用法?Python tensorflow_fold.TensorType怎么用?Python tensorflow_fold.TensorType使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow_fold的用法示例。


在下文中一共展示了tensorflow_fold.TensorType方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: coding_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import TensorType [as 别名]
def coding_blk():
    """Input: node dict
    Output: TensorType([1, hyper.word_dim])
    """
    Wcomb1 = param.get('Wcomb1')
    Wcomb2 = param.get('Wcomb2')

    blk = td.Composition()
    with blk.scope():
        direct = embedding.direct_embed_blk().reads(blk.input)
        composed = embedding.composed_embed_blk().reads(blk.input)
        Wcomb1 = td.FromTensor(param.get('Wcomb1'))
        Wcomb2 = td.FromTensor(param.get('Wcomb2'))

        direct = td.Function(embedding.batch_mul).reads(direct, Wcomb1)
        composed = td.Function(embedding.batch_mul).reads(composed, Wcomb2)

        added = td.Function(tf.add).reads(direct, composed)
        blk.output.reads(added)
    return blk 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:22,代码来源:tbcnn.py

示例2: dynamic_pooling_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import TensorType [as 别名]
def dynamic_pooling_blk():
    """Input: root node dic
    Output: pooled, TensorType([hyper.conv_dim, ])
    """
    leaf_case = feature_detector_blk()

    pool_fwd = td.ForwardDeclaration(td.PyObjectType(), td.TensorType([hyper.conv_dim, ]))
    pool = td.Composition()
    with pool.scope():
        cur_fea = feature_detector_blk().reads(pool.input)
        children = td.GetItem('children').reads(pool.input)

        mapped = td.Map(pool_fwd()).reads(children)
        summed = td.Reduce(td.Function(tf.maximum)).reads(mapped)
        summed = td.Function(tf.maximum).reads(summed, cur_fea)
        pool.output.reads(summed)
    pool = td.OneOf(lambda x: x['clen'] == 0,
                    {True: leaf_case, False: pool})
    pool_fwd.resolve_to(pool)
    return pool 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:22,代码来源:tbcnn.py

示例3: tri_combined_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import TensorType [as 别名]
def tri_combined_blk():
    blk = td.Function(tri_combined, infer_output_type=False)
    blk.set_output_type(td.TensorType([hyper.word_dim, hyper.conv_dim]))
    return blk 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:6,代码来源:tbcnn.py

示例4: weighted_feature_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import TensorType [as 别名]
def weighted_feature_blk():
    """Input: (feature                       , idx   , pclen,  depth,  max_depth)
              (TensorType([hyper.word_dim, ]), Scalar, Scalar, Scalar, Scalar)
    Output: weighted_feature
            TensorType([hyper.conv_dim, ])
    """
    blk = td.Composition()
    with blk.scope():
        fea = blk.input[0]
        Wi = tri_combined_blk().reads(blk.input[1], blk.input[2], blk.input[3], blk.input[4])

        weighted_fea = td.Function(embedding.batch_mul).reads(fea, Wi)

        blk.output.reads(weighted_fea)
    return blk 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:17,代码来源:tbcnn.py

示例5: feature_detector_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import TensorType [as 别名]
def feature_detector_blk(max_depth=2):
    """Input: node dict
    Output: TensorType([hyper.conv_dim, ])
    Single patch of the conv. Depth is max_depth
    """
    blk = td.Composition()
    with blk.scope():
        nodes_in_patch = collect_node_for_conv_patch_blk(max_depth=max_depth).reads(blk.input)

        # map from python object to tensors
        mapped = td.Map(td.Record((coding_blk(), td.Scalar(), td.Scalar(),
                                   td.Scalar(), td.Scalar()))).reads(nodes_in_patch)
        # mapped = [(feature, idx, depth, max_depth), (...)]

        # compute weighted feature for each elem
        weighted = td.Map(weighted_feature_blk()).reads(mapped)
        # weighted = [fea, fea, fea, ...]

        # add together
        added = td.Reduce(td.Function(tf.add)).reads(weighted)
        # added = TensorType([hyper.conv_dim, ])

        # add bias
        biased = td.Function(tf.add).reads(added, td.FromTensor(param.get('Bconv')))
        # biased = TensorType([hyper.conv_dim, ])

        # tanh
        tanh = td.Function(tf.nn.tanh).reads(biased)
        # tanh = TensorType([hyper.conv_dim, ])

        blk.output.reads(tanh)
    return blk


# generalize to tree_fold, accepts one block that takes two node, returns a value 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:37,代码来源:tbcnn.py

示例6: tree_sum_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import TensorType [as 别名]
def tree_sum_blk(loss_blk):
    # traverse the tree to sum up the loss
    tree_sum_fwd = td.ForwardDeclaration(td.PyObjectType(), td.TensorType([]))
    tree_sum = td.Composition()
    with tree_sum.scope():
        myloss = loss_blk().reads(tree_sum.input)
        children = td.GetItem('children').reads(tree_sum.input)

        mapped = td.Map(tree_sum_fwd()).reads(children)
        summed = td.Reduce(td.Function(tf.add)).reads(mapped)
        summed = td.Function(tf.add).reads(summed, myloss)
        tree_sum.output.reads(summed)
    tree_sum_fwd.resolve_to(tree_sum)
    return tree_sum 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:16,代码来源:embedding.py


注:本文中的tensorflow_fold.TensorType方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。