当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow_fold.FromTensor方法代码示例

本文整理汇总了Python中tensorflow_fold.FromTensor方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow_fold.FromTensor方法的具体用法?Python tensorflow_fold.FromTensor怎么用?Python tensorflow_fold.FromTensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow_fold的用法示例。


在下文中一共展示了tensorflow_fold.FromTensor方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: coding_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import FromTensor [as 别名]
def coding_blk():
    """Input: node dict
    Output: TensorType([1, hyper.word_dim])
    """
    Wcomb1 = param.get('Wcomb1')
    Wcomb2 = param.get('Wcomb2')

    blk = td.Composition()
    with blk.scope():
        direct = embedding.direct_embed_blk().reads(blk.input)
        composed = embedding.composed_embed_blk().reads(blk.input)
        Wcomb1 = td.FromTensor(param.get('Wcomb1'))
        Wcomb2 = td.FromTensor(param.get('Wcomb2'))

        direct = td.Function(embedding.batch_mul).reads(direct, Wcomb1)
        composed = td.Function(embedding.batch_mul).reads(composed, Wcomb2)

        added = td.Function(tf.add).reads(direct, composed)
        blk.output.reads(added)
    return blk 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:22,代码来源:tbcnn.py

示例2: continous_weighted_add_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import FromTensor [as 别名]
def continous_weighted_add_blk():
    block = td.Composition(name='continous_weighted_add')
    with block.scope():
        initial = td.GetItem(0).reads(block.input)
        cur = td.GetItem(1).reads(block.input)

        last = td.GetItem(0).reads(initial)
        idx = td.GetItem(1).reads(initial)

        cur_fea = td.GetItem(0).reads(cur)
        cur_clen = td.GetItem(1).reads(cur)
        pclen = td.GetItem(2).reads(cur)

        Wi = linear_combine_blk().reads(cur_clen, pclen, idx)

        weighted_fea = td.Function(batch_mul).reads(cur_fea, Wi)

        block.output.reads(
            td.Function(tf.add, name='add_last_weighted_fea').reads(last, weighted_fea),
            # XXX: rewrite using tf.range
            td.Function(tf.add, name='add_idx_1').reads(idx, td.FromTensor(tf.constant(1.)))
        )
    return block 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:25,代码来源:embedding.py

示例3: l2loss_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import FromTensor [as 别名]
def l2loss_blk():
    # rewrite using metric
    leaf_case = td.Composition()
    with leaf_case.scope():
        leaf_case.output.reads(td.FromTensor(tf.constant(1.)))
    nonleaf_case = td.Composition()
    with nonleaf_case.scope():
        direct = direct_embed_blk().reads(nonleaf_case.input)
        com = composed_embed_blk().reads(nonleaf_case.input)
        loss = td.Function(batch_nn_l2loss).reads(direct, com)
        nonleaf_case.output.reads(loss)
    return td.OneOf(lambda node: node['clen'] != 0,
                    {False: leaf_case, True: nonleaf_case})


# generalize to tree_reduce, accepts one block that takes two node, returns a value 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:18,代码来源:embedding.py

示例4: feature_detector_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import FromTensor [as 别名]
def feature_detector_blk(max_depth=2):
    """Input: node dict
    Output: TensorType([hyper.conv_dim, ])
    Single patch of the conv. Depth is max_depth
    """
    blk = td.Composition()
    with blk.scope():
        nodes_in_patch = collect_node_for_conv_patch_blk(max_depth=max_depth).reads(blk.input)

        # map from python object to tensors
        mapped = td.Map(td.Record((coding_blk(), td.Scalar(), td.Scalar(),
                                   td.Scalar(), td.Scalar()))).reads(nodes_in_patch)
        # mapped = [(feature, idx, depth, max_depth), (...)]

        # compute weighted feature for each elem
        weighted = td.Map(weighted_feature_blk()).reads(mapped)
        # weighted = [fea, fea, fea, ...]

        # add together
        added = td.Reduce(td.Function(tf.add)).reads(weighted)
        # added = TensorType([hyper.conv_dim, ])

        # add bias
        biased = td.Function(tf.add).reads(added, td.FromTensor(param.get('Bconv')))
        # biased = TensorType([hyper.conv_dim, ])

        # tanh
        tanh = td.Function(tf.nn.tanh).reads(biased)
        # tanh = TensorType([hyper.conv_dim, ])

        blk.output.reads(tanh)
    return blk


# generalize to tree_fold, accepts one block that takes two node, returns a value 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:37,代码来源:tbcnn.py

示例5: composed_embed_blk

# 需要导入模块: import tensorflow_fold [as 别名]
# 或者: from tensorflow_fold import FromTensor [as 别名]
def composed_embed_blk():
    leaf_case = direct_embed_blk()
    nonleaf_case = td.Composition(name='composed_embed_nonleaf')
    with nonleaf_case.scope():
        children = td.GetItem('children').reads(nonleaf_case.input)
        clen = td.Scalar().reads(td.GetItem('clen').reads(nonleaf_case.input))
        cclens = td.Map(td.GetItem('clen') >> td.Scalar()).reads(children)
        fchildren = td.Map(direct_embed_blk()).reads(children)

        initial_state = td.Composition()
        with initial_state.scope():
            initial_state.output.reads(
                td.FromTensor(tf.zeros(hyper.word_dim)),
                td.FromTensor(tf.zeros([])),
            )
        summed = td.Zip().reads(fchildren, cclens, td.Broadcast().reads(clen))
        summed = td.Fold(continous_weighted_add_blk(), initial_state).reads(summed)[0]
        added = td.Function(tf.add, name='add_bias').reads(summed, td.FromTensor(param.get('B')))
        normed = clip_by_norm_blk().reads(added)

        act_fn = tf.nn.relu if hyper.use_relu else tf.nn.tanh
        relu = td.Function(act_fn).reads(normed)
        nonleaf_case.output.reads(relu)

    return td.OneOf(lambda node: node['clen'] == 0,
                    {True: leaf_case, False: nonleaf_case}) 
开发者ID:Aetf,项目名称:tensorflow-tbcnn,代码行数:28,代码来源:embedding.py


注:本文中的tensorflow_fold.FromTensor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。