当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.write_file方法代码示例

本文整理汇总了Python中tensorflow.write_file方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.write_file方法的具体用法?Python tensorflow.write_file怎么用?Python tensorflow.write_file使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.write_file方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def __init__(self):
    # image writing graph
    self.tf_graph = tf.Graph()
    with self.tf_graph.as_default():
      self.tf_image = tf.placeholder(tf.uint8, [None, None, 3])
      self.tf_image_path = tf.placeholder(tf.string, [])

      tf_image = tf.image.encode_png(self.tf_image)
      tf_write_op = tf.write_file(self.tf_image_path, tf_image)

      self.tf_write_op = tf_write_op

      init = tf.global_variables_initializer()
      self.tf_session = tf.Session(config=tf.ConfigProto(
          device_count={'GPU': 0}
      ))
      self.tf_session.run(init) 
开发者ID:idearibosome,项目名称:srzoo,代码行数:19,代码来源:image_utils.py

示例2: decode

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def decode(self, ids, strip_extraneous=False):
    """Transform a sequence of int ids into an image file.

    Args:
      ids: list of integers to be converted.
      strip_extraneous: unused

    Returns:
      Path to the temporary file where the image was saved.

    Raises:
      ValueError: if the ids are not of the appropriate size.
    """
    del strip_extraneous
    _, tmp_file_path = tempfile.mkstemp("_decode.png")
    if self._height is None or self._width is None:
      size = int(math.sqrt(len(ids) / self._channels))
      length = size * size * self._channels
    else:
      size = None
      length = self._height * self._width * self._channels
    if len(ids) != length:
      raise ValueError("Length of ids (%d) must be height (%d) x width (%d) x "
                       "channels (%d); %d != %d.\n Ids: %s"
                       % (len(ids), self._height, self._width, self._channels,
                          len(ids), length, " ".join([str(i) for i in ids])))
    with tf.Graph().as_default():
      raw = tf.constant(ids, dtype=tf.uint8)
      if size is None:
        img = tf.reshape(raw, [self._height, self._width, self._channels])
      else:
        img = tf.reshape(raw, [size, size, self._channels])
      png = tf.image.encode_png(img)
      op = tf.write_file(tmp_file_path, png)
      with tf.Session() as sess:
        sess.run(op)
    return tmp_file_path 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:39,代码来源:text_encoder.py

示例3: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(argv=None):
  """Run a Tensorflow model on the Criteo dataset."""
  env = json.loads(os.environ.get('TF_CONFIG', '{}'))
  # First find out if there's a task value on the environment variable.
  # If there is none or it is empty define a default one.
  task_data = env.get('task') or {'type': 'master', 'index': 0}
  argv = sys.argv if argv is None else argv
  args = create_parser().parse_args(args=argv[1:])

  trial = task_data.get('trial')
  if trial is not None:
    output_dir = os.path.join(args.output_path, trial)
  else:
    output_dir = args.output_path

  # Do only evaluation if instructed so, or call Experiment's run.
  if args.eval_only_summary_filename:
    experiment = get_experiment_fn(args)(output_dir)
    # Note that evaluation here will appear as 'one_pass' in tensorboard.
    results = experiment.evaluate(delay_secs=0)
    # Converts numpy types to native types for json dumps.
    json_out = json.dumps(
        {key: value.tolist() for key, value in results.iteritems()})
    with tf.Session():
      tf.write_file(args.eval_only_summary_filename, json_out).run()
  else:
    learn_runner.run(experiment_fn=get_experiment_fn(args),
                     output_dir=output_dir) 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-samples,代码行数:30,代码来源:task.py

示例4: _get_write_image_ops

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def _get_write_image_ops(eval_dir, filename, images):
  """Create Ops that write images to disk."""
  return tf.write_file(
      '%s/%s'% (eval_dir, filename),
      tf.image.encode_png(data_provider.float_image_to_uint8(images))) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:7,代码来源:infogan_eval.py

示例5: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(_, run_eval_loop=True):
  # Fetch real images.
  with tf.name_scope('inputs'):
    real_images, _, _ = data_provider.provide_data(
        'train', FLAGS.num_images_generated, FLAGS.dataset_dir)

  image_write_ops = None
  if FLAGS.eval_real_images:
    tf.summary.scalar('MNIST_Classifier_score',
                      util.mnist_score(real_images, FLAGS.classifier_filename))
  else:
    # In order for variables to load, use the same variable scope as in the
    # train job.
    with tf.variable_scope('Generator'):
      images = networks.unconditional_generator(
          tf.random_normal([FLAGS.num_images_generated, FLAGS.noise_dims]))
    tf.summary.scalar('MNIST_Frechet_distance',
                      util.mnist_frechet_distance(
                          real_images, images, FLAGS.classifier_filename))
    tf.summary.scalar('MNIST_Classifier_score',
                      util.mnist_score(images, FLAGS.classifier_filename))
    if FLAGS.num_images_generated >= 100:
      reshaped_images = tfgan.eval.image_reshaper(
          images[:100, ...], num_cols=10)
      uint8_images = data_provider.float_image_to_uint8(reshaped_images)
      image_write_ops = tf.write_file(
          '%s/%s'% (FLAGS.eval_dir, 'unconditional_gan.png'),
          tf.image.encode_png(uint8_images[0]))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:39,代码来源:eval.py

示例6: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(_, run_eval_loop=True):
  with tf.name_scope('inputs'):
    noise, one_hot_labels = _get_generator_inputs(
        FLAGS.num_images_per_class, NUM_CLASSES, FLAGS.noise_dims)

  # Generate images.
  with tf.variable_scope('Generator'):  # Same scope as in train job.
    images = networks.conditional_generator((noise, one_hot_labels))

  # Visualize images.
  reshaped_img = tfgan.eval.image_reshaper(
      images, num_cols=FLAGS.num_images_per_class)
  tf.summary.image('generated_images', reshaped_img, max_outputs=1)

  # Calculate evaluation metrics.
  tf.summary.scalar('MNIST_Classifier_score',
                    util.mnist_score(images, FLAGS.classifier_filename))
  tf.summary.scalar('MNIST_Cross_entropy',
                    util.mnist_cross_entropy(
                        images, one_hot_labels, FLAGS.classifier_filename))

  # Write images to disk.
  image_write_ops = tf.write_file(
      '%s/%s'% (FLAGS.eval_dir, 'conditional_gan.png'),
      tf.image.encode_png(data_provider.float_image_to_uint8(reshaped_img[0])))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:36,代码来源:conditional_eval.py

示例7: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(_, run_eval_loop=True):
  with tf.name_scope('inputs'):
    images = data_provider.provide_data(
        'validation', FLAGS.batch_size, dataset_dir=FLAGS.dataset_dir,
        patch_size=FLAGS.patch_size)

  # In order for variables to load, use the same variable scope as in the
  # train job.
  with tf.variable_scope('generator'):
    reconstructions, _, prebinary = networks.compression_model(
        images,
        num_bits=FLAGS.bits_per_patch,
        depth=FLAGS.model_depth,
        is_training=False)
  summaries.add_reconstruction_summaries(images, reconstructions, prebinary)

  # Visualize losses.
  pixel_loss_per_example = tf.reduce_mean(
      tf.abs(images - reconstructions), axis=[1, 2, 3])
  pixel_loss = tf.reduce_mean(pixel_loss_per_example)
  tf.summary.histogram('pixel_l1_loss_hist', pixel_loss_per_example)
  tf.summary.scalar('pixel_l1_loss', pixel_loss)

  # Create ops to write images to disk.
  uint8_images = data_provider.float_image_to_uint8(images)
  uint8_reconstructions = data_provider.float_image_to_uint8(reconstructions)
  uint8_reshaped = summaries.stack_images(uint8_images, uint8_reconstructions)
  image_write_ops = tf.write_file(
      '%s/%s'% (FLAGS.eval_dir, 'compression.png'),
      tf.image.encode_png(uint8_reshaped[0]))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      master=FLAGS.master,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:42,代码来源:eval.py

示例8: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(_, run_eval_loop=True):
  # Fetch real images.
  with tf.name_scope('inputs'):
    real_images, _, _ = data_provider.provide_data(
        'train', FLAGS.num_images_generated, FLAGS.dataset_dir)

  image_write_ops = None
  if FLAGS.eval_real_images:
    tf.summary.scalar('MNIST_Classifier_score',
                      util.mnist_score(real_images, FLAGS.classifier_filename))
  else:
    # In order for variables to load, use the same variable scope as in the
    # train job.
    with tf.variable_scope('Generator'):
      images = networks.unconditional_generator(
          tf.random_normal([FLAGS.num_images_generated, FLAGS.noise_dims]),
          is_training=False)
    tf.summary.scalar('MNIST_Frechet_distance',
                      util.mnist_frechet_distance(
                          real_images, images, FLAGS.classifier_filename))
    tf.summary.scalar('MNIST_Classifier_score',
                      util.mnist_score(images, FLAGS.classifier_filename))
    if FLAGS.num_images_generated >= 100 and FLAGS.write_to_disk:
      reshaped_images = tfgan.eval.image_reshaper(
          images[:100, ...], num_cols=10)
      uint8_images = data_provider.float_image_to_uint8(reshaped_images)
      image_write_ops = tf.write_file(
          '%s/%s'% (FLAGS.eval_dir, 'unconditional_gan.png'),
          tf.image.encode_png(uint8_images[0]))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations) 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:40,代码来源:eval.py

示例9: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(_, run_eval_loop=True):
  with tf.name_scope('inputs'):
    noise, one_hot_labels = _get_generator_inputs(
        FLAGS.num_images_per_class, NUM_CLASSES, FLAGS.noise_dims)

  # Generate images.
  with tf.variable_scope('Generator'):  # Same scope as in train job.
    images = networks.conditional_generator(
        (noise, one_hot_labels), is_training=False)

  # Visualize images.
  reshaped_img = tfgan.eval.image_reshaper(
      images, num_cols=FLAGS.num_images_per_class)
  tf.summary.image('generated_images', reshaped_img, max_outputs=1)

  # Calculate evaluation metrics.
  tf.summary.scalar('MNIST_Classifier_score',
                    util.mnist_score(images, FLAGS.classifier_filename))
  tf.summary.scalar('MNIST_Cross_entropy',
                    util.mnist_cross_entropy(
                        images, one_hot_labels, FLAGS.classifier_filename))

  # Write images to disk.
  image_write_ops = None
  if FLAGS.write_to_disk:
    image_write_ops = tf.write_file(
        '%s/%s'% (FLAGS.eval_dir, 'conditional_gan.png'),
        tf.image.encode_png(data_provider.float_image_to_uint8(
            reshaped_img[0])))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations) 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:40,代码来源:conditional_eval.py

示例10: testWriteFile

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def testWriteFile(self):
    cases = ['', 'Some contents']
    for contents in cases:
      contents = tf.compat.as_bytes(contents)
      temp = tempfile.NamedTemporaryFile(
          prefix='WriteFileTest', dir=self.get_temp_dir())
      with self.test_session() as sess:
        w = tf.write_file(temp.name, contents)
        sess.run(w)
        file_contents = open(temp.name, 'rb').read()
        self.assertEqual(file_contents, contents) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:13,代码来源:io_ops_test.py

示例11: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(_, run_eval_loop=True):
  # Fetch and generate images to run through Inception.
  with tf.name_scope('inputs'):
    real_data, num_classes = _get_real_data(
        FLAGS.num_images_generated, FLAGS.dataset_dir)
    generated_data = _get_generated_data(
        FLAGS.num_images_generated, FLAGS.conditional_eval, num_classes)

  # Compute Frechet Inception Distance.
  if FLAGS.eval_frechet_inception_distance:
    fid = util.get_frechet_inception_distance(
        real_data, generated_data, FLAGS.num_images_generated,
        FLAGS.num_inception_images)
    tf.summary.scalar('frechet_inception_distance', fid)

  # Compute normal Inception scores.
  if FLAGS.eval_real_images:
    inc_score = util.get_inception_scores(
        real_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
  else:
    inc_score = util.get_inception_scores(
        generated_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
  tf.summary.scalar('inception_score', inc_score)

  # If conditional, display an image grid of difference classes.
  if FLAGS.conditional_eval and not FLAGS.eval_real_images:
    reshaped_imgs = util.get_image_grid(
        generated_data, FLAGS.num_images_generated, num_classes,
        FLAGS.num_images_per_class)
    tf.summary.image('generated_data', reshaped_imgs, max_outputs=1)

  # Create ops that write images to disk.
  image_write_ops = None
  if FLAGS.conditional_eval:
    reshaped_imgs = util.get_image_grid(
        generated_data, FLAGS.num_images_generated, num_classes,
        FLAGS.num_images_per_class)
    uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
    image_write_ops = tf.write_file(
        '%s/%s'% (FLAGS.eval_dir, 'conditional_cifar10.png'),
        tf.image.encode_png(uint8_images[0]))
  else:
    if FLAGS.num_images_generated >= 100:
      reshaped_imgs = tfgan.eval.image_reshaper(
          generated_data[:100], num_cols=FLAGS.num_images_per_class)
      uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
      image_write_ops = tf.write_file(
          '%s/%s'% (FLAGS.eval_dir, 'unconditional_cifar10.png'),
          tf.image.encode_png(uint8_images[0]))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      master=FLAGS.master,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:61,代码来源:eval.py

示例12: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(_, run_eval_loop=True):
  # Fetch and generate images to run through Inception.
  with tf.name_scope('inputs'):
    real_data, num_classes = _get_real_data(
        FLAGS.num_images_generated, FLAGS.dataset_dir)
    generated_data = _get_generated_data(
        FLAGS.num_images_generated, FLAGS.conditional_eval, num_classes)

  # Compute Frechet Inception Distance.
  if FLAGS.eval_frechet_inception_distance:
    fid = util.get_frechet_inception_distance(
        real_data, generated_data, FLAGS.num_images_generated,
        FLAGS.num_inception_images)
    tf.summary.scalar('frechet_inception_distance', fid)

  # Compute normal Inception scores.
  if FLAGS.eval_real_images:
    inc_score = util.get_inception_scores(
        real_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
  else:
    inc_score = util.get_inception_scores(
        generated_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
  tf.summary.scalar('inception_score', inc_score)

  # If conditional, display an image grid of difference classes.
  if FLAGS.conditional_eval and not FLAGS.eval_real_images:
    reshaped_imgs = util.get_image_grid(
        generated_data, FLAGS.num_images_generated, num_classes,
        FLAGS.num_images_per_class)
    tf.summary.image('generated_data', reshaped_imgs, max_outputs=1)

  # Create ops that write images to disk.
  image_write_ops = None
  if FLAGS.conditional_eval and FLAGS.write_to_disk:
    reshaped_imgs = util.get_image_grid(
        generated_data, FLAGS.num_images_generated, num_classes,
        FLAGS.num_images_per_class)
    uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
    image_write_ops = tf.write_file(
        '%s/%s'% (FLAGS.eval_dir, 'conditional_cifar10.png'),
        tf.image.encode_png(uint8_images[0]))
  else:
    if FLAGS.num_images_generated >= 100 and FLAGS.write_to_disk:
      reshaped_imgs = tfgan.eval.image_reshaper(
          generated_data[:100], num_cols=FLAGS.num_images_per_class)
      uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
      image_write_ops = tf.write_file(
          '%s/%s'% (FLAGS.eval_dir, 'unconditional_cifar10.png'),
          tf.image.encode_png(uint8_images[0]))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      master=FLAGS.master,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations) 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:61,代码来源:eval.py

示例13: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main(unused_argv):
  # initialize
  tf.logging.set_verbosity(tf.logging.INFO)

  # downscaling session
  tf_downscale_graph = tf.Graph()
  with tf_downscale_graph.as_default():
    tf_input_path = tf.placeholder(tf.string, [])
    tf_output_path = tf.placeholder(tf.string, [])
    tf_scale = tf.placeholder(tf.int32, [])
        
    tf_image = tf.read_file(tf_input_path)
    tf_image = tf.image.decode_png(tf_image, channels=3, dtype=tf.uint8)
    tf_image = tf.image.resize_bicubic([tf_image], size=[tf.shape(tf_image)[0] // tf_scale, tf.shape(tf_image)[1] // tf_scale], align_corners=True)[0]
    tf_image = tf.cast(tf.clip_by_value(tf_image, 0.0, 255.0), tf.uint8)
    tf_image = tf.image.encode_png(tf_image)
    tf_downscale_op = tf.write_file(tf_output_path, tf_image)

    tf_downscale_init = tf.global_variables_initializer()
    tf_downscale_session = tf.Session(config=tf.ConfigProto(
      device_count={'GPU': 0}
    ))
    tf_downscale_session.run(tf_downscale_init)

  # retrieve image name list
  image_name_list = [f for f in os.listdir(FLAGS.input_path) if f.lower().endswith('.png')]
  tf.logging.info('data: %d images are prepared' % (len(image_name_list)))

  # downscale
  for (i, image_name) in enumerate(image_name_list):
    input_path = os.path.join(FLAGS.input_path, image_name)
    output_path = os.path.join(FLAGS.output_path, image_name)

    feed_dict = {
      tf_input_path: input_path,
      tf_output_path: output_path,
      tf_scale: FLAGS.scale
    }

    tf.logging.info('%d/%d, %s' % ((i+1), len(image_name_list), image_name))
    tf_downscale_session.run(tf_downscale_op, feed_dict=feed_dict)

  # finalize
  tf.logging.info('finished') 
开发者ID:idearibosome,项目名称:tf-perceptual-eusr,代码行数:46,代码来源:downscale_generator_tf.py

示例14: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import write_file [as 别名]
def main():
  if (not args.use_gpu):
    os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
  
  # load and build graph
  with tf.Graph().as_default():
    model_input_path = tf.placeholder(tf.string, [])
    model_output_path = tf.placeholder(tf.string, [])
    
    image = tf.read_file(model_input_path)
    image = [tf.image.decode_png(image, channels=3, dtype=tf.uint8)]
    image = tf.cast(image, tf.float32)
    
    with tf.gfile.GFile(args.model_name, 'rb') as f:
      model_graph_def = tf.GraphDef()
      model_graph_def.ParseFromString(f.read())
    
    model_output = tf.import_graph_def(model_graph_def, name='model', input_map={'sr_input:0': image}, return_elements=['sr_output:0'])[0]
    
    model_output = model_output[0, :, :, :]
    model_output = tf.round(model_output)
    model_output = tf.clip_by_value(model_output, 0, 255)
    model_output = tf.cast(model_output, tf.uint8)
    
    image = tf.image.encode_png(model_output)
    write_op = tf.write_file(model_output_path, image)
    
    init = tf.global_variables_initializer()
    
    sess = tf.Session(config=tf.ConfigProto(
        log_device_placement=False,
        allow_soft_placement=True
    ))
    sess.run(init)
  
  # get image path list
  image_path_list = []
  for root, subdirs, files in os.walk(args.input_path):
    for filename in files:
      if (filename.lower().endswith('.png')):
        input_path = os.path.join(args.input_path, filename)
        output_path = os.path.join(args.output_path, filename)

        image_path_list.append([input_path, output_path])
  print('Found %d images' % (len(image_path_list)))
  
  # iterate
  for input_path, output_path in image_path_list:
    print('- %s -> %s' % (input_path, output_path))
    sess.run([write_op], feed_dict={model_input_path:input_path, model_output_path:output_path})
  
  print('Done') 
开发者ID:idearibosome,项目名称:tf-perceptual-eusr,代码行数:54,代码来源:test.py


注:本文中的tensorflow.write_file方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。