本文整理汇总了Python中tensorflow.unstack方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.unstack方法的具体用法?Python tensorflow.unstack怎么用?Python tensorflow.unstack使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.unstack方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: stackedRNN
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def stackedRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units):
n_hidden=hidden_units
n_layers=3
# Prepare data shape to match `static_rnn` function requirements
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
# print(x)
# Define lstm cells with tensorflow
# Forward direction cell
with tf.name_scope("fw"+scope),tf.variable_scope("fw"+scope):
stacked_rnn_fw = []
for _ in range(n_layers):
fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell,output_keep_prob=dropout)
stacked_rnn_fw.append(lstm_fw_cell)
lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True)
outputs, _ = tf.nn.static_rnn(lstm_fw_cell_m, x, dtype=tf.float32)
return outputs[-1]
示例2: _create_lstm_inputs
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def _create_lstm_inputs(self, net):
"""Splits an input tensor into a list of tensors (features).
Args:
net: A feature map of shape [batch_size, num_features, feature_size].
Raises:
AssertionError: if num_features is less than seq_length.
Returns:
A list with seq_length tensors of shape [batch_size, feature_size]
"""
num_features = net.get_shape().dims[1].value
if num_features < self._params.seq_length:
raise AssertionError('Incorrect dimension #1 of input tensor'
' %d should be bigger than %d (shape=%s)' %
(num_features, self._params.seq_length,
net.get_shape()))
elif num_features > self._params.seq_length:
logging.warning('Ignoring some features: use %d of %d (shape=%s)',
self._params.seq_length, num_features, net.get_shape())
net = tf.slice(net, [0, 0, 0], [-1, self._params.seq_length, -1])
return tf.unstack(net, axis=1)
示例3: lstm_online
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def lstm_online(cell_fn, num_steps, inputs, state, varscope):
# inputs is B x num_steps x C, C channels.
# state is 2 tuple with B x 1 x C1, B x 1 x C2
# Output state is always B x 1 x C
inputs = tf.unstack(inputs, axis=1, num=num_steps)
state = tf.unstack(state, axis=1, num=1)[0]
outputs = []
if num_steps > 1:
varscope.reuse_variables()
for s in range(num_steps):
output, state = cell_fn(inputs[s], state)
outputs.append(output)
outputs = tf.stack(outputs, axis=1)
state = tf.stack([state], axis=1)
return outputs, state
示例4: clip_to_window
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def clip_to_window(keypoints, window, scope=None):
"""Clips keypoints to a window.
This op clips any input keypoints to a window.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window to which the op should clip the keypoints.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
with tf.name_scope(scope, 'ClipToWindow'):
y, x = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
y = tf.maximum(tf.minimum(y, win_y_max), win_y_min)
x = tf.maximum(tf.minimum(x, win_x_max), win_x_min)
new_keypoints = tf.concat([y, x], 2)
return new_keypoints
示例5: _CrossConv
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def _CrossConv(self, encoded_images):
"""Apply the motion kernel on the encoded_images."""
cross_conved_images = []
kernels = tf.split(axis=3, num_or_size_splits=4, value=self.kernel)
for (i, encoded_image) in enumerate(encoded_images):
with tf.variable_scope('cross_conv_%d' % i):
kernel = kernels[i]
encoded_image = tf.unstack(encoded_image, axis=0)
kernel = tf.unstack(kernel, axis=0)
assert len(encoded_image) == len(kernel)
assert len(encoded_image) == self.params['batch_size']
conved_image = []
for j in xrange(len(encoded_image)):
conved_image.append(self._CrossConvHelper(
encoded_image[j], kernel[j]))
cross_conved_images.append(tf.concat(axis=0, values=conved_image))
sys.stderr.write('cross_conved shape: %s\n' %
cross_conved_images[-1].get_shape())
return cross_conved_images
示例6: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def __init__(self, num_experts, gates):
"""Create a SparseDispatcher.
Args:
num_experts: an integer.
gates: a `Tensor` of shape `[batch_size, num_experts]`.
Returns:
a SparseDispatcher
"""
self._gates = gates
self._num_experts = num_experts
where = tf.to_int32(tf.where(tf.transpose(gates) > 0))
self._expert_index, self._batch_index = tf.unstack(where, num=2, axis=1)
self._part_sizes_tensor = tf.reduce_sum(tf.to_int32(gates > 0), [0])
self._nonzero_gates = tf.gather(
tf.reshape(self._gates, [-1]),
self._batch_index * num_experts + self._expert_index)
示例7: combine
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def combine(self, expert_out, multiply_by_gates=True):
"""Sum together the expert output, multiplied by the corresponding gates.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean.
Returns:
a list of num_datashards `Tensor`s with shapes
`[batch_size[d], <extra_output_dims>]`.
"""
expert_part_sizes = tf.unstack(
tf.stack([d.part_sizes for d in self._dispatchers]),
num=self._ep.n,
axis=1)
# list of lists of shape [num_experts][num_datashards]
expert_output_parts = self._ep(tf.split, expert_out, expert_part_sizes)
expert_output_parts_t = transpose_list_of_lists(expert_output_parts)
def my_combine(dispatcher, parts):
return dispatcher.combine(
common_layers.convert_gradient_to_tensor(tf.concat(parts, 0)),
multiply_by_gates=multiply_by_gates)
return self._dp(my_combine, self._dispatchers, expert_output_parts_t)
示例8: get_center_coordinates_and_sizes
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def get_center_coordinates_and_sizes(self, scope=None):
"""Computes the center coordinates, height and width of the boxes.
Args:
scope: name scope of the function.
Returns:
a list of 4 1-D tensors [ycenter, xcenter, height, width].
"""
with tf.name_scope(scope, 'get_center_coordinates_and_sizes'):
box_corners = self.get()
ymin, xmin, ymax, xmax = tf.unstack(tf.transpose(box_corners))
width = xmax - xmin
height = ymax - ymin
ycenter = ymin + height / 2.
xcenter = xmin + width / 2.
return [ycenter, xcenter, height, width]
示例9: unroll
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def unroll(self, actions, env_outputs, core_state):
"""Manual implementation of the network unroll."""
_, _, done, _ = env_outputs
torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs))
# Note, in this implementation we can't use CuDNN RNN to speed things up due
# to the state reset. This can be XLA-compiled (LSTMBlockCell needs to be
# changed to implement snt.LSTMCell).
initial_core_state = self._core.zero_state(tf.shape(actions)[1], tf.float32)
core_output_list = []
for input_, d in zip(tf.unstack(torso_outputs), tf.unstack(done)):
# If the episode ended, the core state should be reset before the next.
core_state = nest.map_structure(
functools.partial(tf.where, d), initial_core_state, core_state)
core_output, core_state = self._core(input_, core_state)
core_output_list.append(core_output)
return snt.BatchApply(self._head)(tf.stack(core_output_list)), core_state
示例10: BiRNN
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def BiRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units):
n_hidden=hidden_units
n_layers=3
# Prepare data shape to match `static_rnn` function requirements
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
print(x)
# Define lstm cells with tensorflow
# Forward direction cell
with tf.name_scope("fw"+scope),tf.variable_scope("fw"+scope):
stacked_rnn_fw = []
for _ in range(n_layers):
fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell,output_keep_prob=dropout)
stacked_rnn_fw.append(lstm_fw_cell)
lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True)
with tf.name_scope("bw"+scope),tf.variable_scope("bw"+scope):
stacked_rnn_bw = []
for _ in range(n_layers):
bw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell,output_keep_prob=dropout)
stacked_rnn_bw.append(lstm_bw_cell)
lstm_bw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_bw, state_is_tuple=True)
# Get lstm cell output
with tf.name_scope("bw"+scope),tf.variable_scope("bw"+scope):
outputs, _, _ = tf.nn.static_bidirectional_rnn(lstm_fw_cell_m, lstm_bw_cell_m, x, dtype=tf.float32)
return outputs[-1]
示例11: biLSTMCell
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def biLSTMCell(x, hiddenSize):
input_x = tf.transpose(x, [1, 0, 2])
input_x = tf.unstack(input_x)
lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(hiddenSize, forget_bias=1.0, state_is_tuple=True)
lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(hiddenSize, forget_bias=1.0, state_is_tuple=True)
output, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, input_x, dtype=tf.float32)
output = tf.stack(output)
output = tf.transpose(output, [1, 0, 2])
return output
示例12: build_reward
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def build_reward(self):
with tf.name_scope('permutations'):
# Reorder input % tour
self.ordered_input_ = []
for input_, path in zip(tf.unstack(self.input_,axis=0), tf.unstack(self.positions,axis=0)): # Unstack % batch axis
self.ordered_input_.append(tf.gather_nd(input_,tf.expand_dims(path,1)))
self.ordered_input_ = tf.transpose(tf.stack(self.ordered_input_,0),[2,1,0]) # [batch size, seq length +1 , features] to [features, seq length +1, batch_size] Rq: +1 because end = start = first_city
# Ordered coordinates
ordered_x_ = self.ordered_input_[0] # [seq length +1, batch_size]
delta_x2 = tf.transpose(tf.square(ordered_x_[1:]-ordered_x_[:-1]),[1,0]) # [batch_size, seq length] delta_x**2
ordered_y_ = self.ordered_input_[1] # [seq length +1, batch_size]
delta_y2 = tf.transpose(tf.square(ordered_y_[1:]-ordered_y_[:-1]),[1,0]) # [batch_size, seq length] delta_y**2
with tf.name_scope('environment'):
# Get tour length (euclidean distance)
inter_city_distances = tf.sqrt(delta_x2+delta_y2) # sqrt(delta_x**2 + delta_y**2) this is the euclidean distance between each city: depot --> ... ---> depot [batch_size, seq length]
self.distances = tf.reduce_sum(inter_city_distances, axis=1) # [batch_size]
#variable_summaries('tour_length',self.distances, with_max_min = True)
# Define reward from tour length
self.reward = tf.cast(self.distances,tf.float32)
variable_summaries('reward',self.reward, with_max_min = True)
示例13: __call__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def __call__(self, x, initial_state, seq_length):
with tf.variable_scope(self.name, reuse=self.reuse) as vs:
cell = tf.contrib.rnn.MultiRNNCell([
tf.contrib.rnn.BasicLSTMCell(
self.cell_size,
forget_bias=0.0,
reuse=tf.get_variable_scope().reuse)
for _ in xrange(self.num_layers)
])
# shape(x) = (batch_size, num_timesteps, embedding_dim)
# Convert into a time-major list for static_rnn
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
lstm_out, next_state = tf.contrib.rnn.static_rnn(
cell, x, initial_state=initial_state, sequence_length=seq_length)
# Merge time and batch dimensions
# shape(lstm_out) = timesteps * (batch_size, cell_size)
lstm_out = tf.concat(lstm_out, 0)
# shape(lstm_out) = (timesteps*batch_size, cell_size)
if self.keep_prob < 1.:
lstm_out = tf.nn.dropout(lstm_out, self.keep_prob)
if self.reuse is None:
self.trainable_weights = vs.global_variables()
self.reuse = True
return lstm_out, next_state
示例14: input_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def input_fn(subset, num_shards):
"""Create input graph for model.
Args:
subset: one of 'train', 'validate' and 'eval'.
num_shards: num of towers participating in data-parallel training.
Returns:
two lists of tensors for features and labels, each of num_shards length.
"""
if subset == 'train':
batch_size = FLAGS.train_batch_size
elif subset == 'validate' or subset == 'eval':
batch_size = FLAGS.eval_batch_size
else:
raise ValueError('Subset must be one of \'train\', \'validate\' and \'eval\'')
with tf.device('/cpu:0'):
use_distortion = subset == 'train' and FLAGS.use_distortion_for_training
dataset = cifar10.Cifar10DataSet(FLAGS.data_dir, subset, use_distortion)
image_batch, label_batch = dataset.make_batch(batch_size)
if num_shards <= 1:
# No GPU available or only 1 GPU.
return [image_batch], [label_batch]
# Note that passing num=batch_size is safe here, even though
# dataset.batch(batch_size) can, in some cases, return fewer than batch_size
# examples. This is because it does so only when repeating for a limited
# number of epochs, but our dataset repeats forever.
image_batch = tf.unstack(image_batch, num=batch_size, axis=0)
label_batch = tf.unstack(label_batch, num=batch_size, axis=0)
feature_shards = [[] for i in range(num_shards)]
label_shards = [[] for i in range(num_shards)]
for i in xrange(batch_size):
idx = i % num_shards
feature_shards[idx].append(image_batch[i])
label_shards[idx].append(label_batch[i])
feature_shards = [tf.parallel_stack(x) for x in feature_shards]
label_shards = [tf.parallel_stack(x) for x in label_shards]
return feature_shards, label_shards
示例15: running_combine
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import unstack [as 别名]
def running_combine(fss_logits, confs_probs, incremental_locs,
incremental_thetas, previous_sum_num, previous_sum_denom,
previous_max_denom, map_size, num_steps):
# fss_logits is B x N x H x W x C
# confs_logits is B x N x H x W x C
# incremental_locs is B x N x 2
# incremental_thetas is B x N x 1
# previous_sum_num etc is B x 1 x H x W x C
with tf.name_scope('combine_{:d}'.format(num_steps)):
running_sum_nums_ = []; running_sum_denoms_ = [];
running_max_denoms_ = [];
fss_logits_ = tf.unstack(fss_logits, axis=1, num=num_steps)
confs_probs_ = tf.unstack(confs_probs, axis=1, num=num_steps)
incremental_locs_ = tf.unstack(incremental_locs, axis=1, num=num_steps)
incremental_thetas_ = tf.unstack(incremental_thetas, axis=1, num=num_steps)
running_sum_num = tf.unstack(previous_sum_num, axis=1, num=1)[0]
running_sum_denom = tf.unstack(previous_sum_denom, axis=1, num=1)[0]
running_max_denom = tf.unstack(previous_max_denom, axis=1, num=1)[0]
for i in range(num_steps):
# Rotate the previous running_num and running_denom
running_sum_num, running_sum_denom, running_max_denom = rotate_preds(
incremental_locs_[i], incremental_thetas_[i], map_size,
[running_sum_num, running_sum_denom, running_max_denom],
output_valid_mask=False)[0]
# print i, num_steps, running_sum_num.get_shape().as_list()
running_sum_num = running_sum_num + fss_logits_[i] * confs_probs_[i]
running_sum_denom = running_sum_denom + confs_probs_[i]
running_max_denom = tf.maximum(running_max_denom, confs_probs_[i])
running_sum_nums_.append(running_sum_num)
running_sum_denoms_.append(running_sum_denom)
running_max_denoms_.append(running_max_denom)
running_sum_nums = tf.stack(running_sum_nums_, axis=1)
running_sum_denoms = tf.stack(running_sum_denoms_, axis=1)
running_max_denoms = tf.stack(running_max_denoms_, axis=1)
return running_sum_nums, running_sum_denoms, running_max_denoms