当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.uint8方法代码示例

本文整理汇总了Python中tensorflow.uint8方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.uint8方法的具体用法?Python tensorflow.uint8怎么用?Python tensorflow.uint8使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.uint8方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
        self.resolution         = resolution
        self.resolution_log2    = int(np.log2(resolution))
        self.shape              = [num_channels, resolution, resolution]
        self.dtype              = dtype
        self.dynamic_range      = dynamic_range
        self.label_size         = label_size
        self.label_dtype        = label_dtype
        self._tf_minibatch_var  = None
        self._tf_lod_var        = None
        self._tf_minibatch_np   = None
        self._tf_labels_np      = None

        assert self.resolution == 2 ** self.resolution_log2
        with tf.name_scope('Dataset'):
            self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
            self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var') 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:19,代码来源:dataset.py

示例2: from_float32_to_uint8

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def from_float32_to_uint8(
        tensor,
        tensor_key='tensor',
        min_key='min',
        max_key='max'):
    """

    :param tensor:
    :param tensor_key:
    :param min_key:
    :param max_key:
    :returns:
    """
    tensor_min = tf.reduce_min(tensor)
    tensor_max = tf.reduce_max(tensor)
    return {
        tensor_key: tf.cast(
            (tensor - tensor_min) / (tensor_max - tensor_min + 1e-16)
            * 255.9999, dtype=tf.uint8),
        min_key: tensor_min,
        max_key: tensor_max
    } 
开发者ID:deezer,项目名称:spleeter,代码行数:24,代码来源:tensor.py

示例3: read_from_tfrecord

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
    reader = tf.TFRecordReader()
    _, tfrecord_serialized = reader.read(tfrecord_file_queue)

    tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
        'label': tf.FixedLenFeature([],tf.int64),
        'shape': tf.FixedLenFeature([],tf.string),
        'image': tf.FixedLenFeature([],tf.string),
    }, name='features')

    image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)

    image = tf.reshape(image, shape)
    label = tfrecord_features['label']
    return label, shape, image 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:19,代码来源:18_basic_tfrecord.py

示例4: _extract_images

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def _extract_images(filename, num_images):
  """Extract the images into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  print('Extracting images from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(
        _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  return data 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:download_and_convert_mnist.py

示例5: _extract_labels

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def _extract_labels(filename, num_labels):
  """Extract the labels into a vector of int64 label IDs.

  Args:
    filename: The path to an MNIST labels file.
    num_labels: The number of labels in the file.

  Returns:
    A numpy array of shape [number_of_labels]
  """
  print('Extracting labels from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_labels)
    labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
  return labels 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:download_and_convert_mnist.py

示例6: read_and_decode

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
      # Defaults are not specified since both keys are required.
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image = tf.reshape(image, [227, 227, 6])

  # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
    return tf.split(image, 2, 2) # 3rd dimension two parts 
开发者ID:yiling-chen,项目名称:view-finding-network,代码行数:18,代码来源:vfn_train.py

示例7: read_and_decode_aug

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def read_and_decode_aug(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
      # Defaults are not specified since both keys are required.
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6]))
  # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
    image = tf.image.random_brightness(image, 0.01)
    image = tf.image.random_contrast(image, 0.95, 1.05)
    return tf.split(image, 2, 2) # 3rd dimension two parts 
开发者ID:yiling-chen,项目名称:view-finding-network,代码行数:19,代码来源:vfn_train.py

示例8: image_summary

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def image_summary(predictions, targets, hparams):
  """Reshapes predictions and passes it to tensorboard.

  Args:
    predictions : The predicted image (logits).
    targets : The ground truth.
    hparams: model hparams.

  Returns:
    summary_proto: containing the summary images.
    weights: A Tensor of zeros of the same shape as predictions.
  """
  del hparams
  results = tf.cast(tf.argmax(predictions, axis=-1), tf.uint8)
  gold = tf.cast(targets, tf.uint8)
  summary1 = tf.summary.image("prediction", results, max_outputs=2)
  summary2 = tf.summary.image("data", gold, max_outputs=2)
  summary = tf.summary.merge([summary1, summary2])
  return summary, tf.zeros_like(predictions) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:21,代码来源:metrics.py

示例9: summarize_video

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def summarize_video(video, prefix, max_outputs=1):
  """Summarize the video using image summaries starting with prefix."""
  video_shape = shape_list(video)
  if len(video_shape) != 5:
    raise ValueError("Assuming videos given as tensors in the format "
                     "[batch, time, height, width, channels] but got one "
                     "of shape: %s" % str(video_shape))
  if tf.contrib.eager.in_eager_mode():
    return
  if video.get_shape().as_list()[1] is None:
    tf.summary.image(
        "%s_last_frame" % prefix,
        tf.cast(video[:, -1, :, :, :], tf.uint8),
        max_outputs=max_outputs)
  else:
    for k in range(video_shape[1]):
      tf.summary.image(
          "%s_frame_%d" % (prefix, k),
          tf.cast(video[:, k, :, :, :], tf.uint8),
          max_outputs=max_outputs) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:22,代码来源:common_layers.py

示例10: get_mse_per_img

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def get_mse_per_img(inp, otp, cast_to_int):
        """
        :param inp: NCHW
        :param otp: NCHW
        :param cast_to_int: if True, both inp and otp are casted to int32 before the error is calculated,
        to ensure real world errors (image pixels are always quantized). But the error is always casted back to
        float32 before a mean per image is calculated and returned
        :return: float32 tensor of shape (N,)
        """
        with tf.name_scope('mse_{}'.format('int' if cast_to_int else 'float')):
            if cast_to_int:
                # Values are expected to be in 0...255, i.e., uint8, but tf.square does not support uint8's
                inp, otp = tf.cast(inp, tf.int32), tf.cast(otp, tf.int32)
            squared_error = tf.square(otp - inp)
            squared_error_float = tf.to_float(squared_error)
            mse_per_image = tf.reduce_mean(squared_error_float, axis=[1, 2, 3])
            return mse_per_image 
开发者ID:fab-jul,项目名称:imgcomp-cvpr,代码行数:19,代码来源:train.py

示例11: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def main():
    args = parse_args()

    with tf.Session(graph=tf.Graph()) as session:
        input_var = tf.placeholder(
            tf.uint8, (None, 128, 64, 3), name="images")
        image_var = tf.map_fn(
            lambda x: _preprocess(x), tf.cast(input_var, tf.float32),
            back_prop=False)

        factory_fn = _network_factory()
        features, _ = factory_fn(image_var, reuse=None)
        features = tf.identity(features, name="features")

        saver = tf.train.Saver(slim.get_variables_to_restore())
        saver.restore(session, args.checkpoint_in)

        output_graph_def = tf.graph_util.convert_variables_to_constants(
            session, tf.get_default_graph().as_graph_def(),
            [features.name.split(":")[0]])
        with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle:
            file_handle.write(output_graph_def.SerializeToString()) 
开发者ID:nwojke,项目名称:deep_sort,代码行数:24,代码来源:freeze_model.py

示例12: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def __init__(self, fin, scale=1.0, fmask=None):
            self.fin = fin
            # read in distort
            with open(fin, 'r') as f:
                header = f.readline().rstrip()
                chunks = re.sub(r'[^0-9,]', '', header).split(',')
                self.mapu = np.zeros((int(chunks[1]), int(chunks[0])),
                                     dtype=np.float32)
                self.mapv = np.zeros((int(chunks[1]), int(chunks[0])),
                                     dtype=np.float32)
                for line in f.readlines():
                    chunks = line.rstrip().split(' ')
                    self.mapu[int(chunks[0]), int(chunks[1])] = float(chunks[3])
                    self.mapv[int(chunks[0]), int(chunks[1])] = float(chunks[2])
            # generate a mask
            self.mask = np.ones(self.mapu.shape, dtype=np.uint8)
            self.mask = cv2.remap(self.mask, self.mapu, self.mapv, cv2.INTER_LINEAR)
            kernel = np.ones((30, 30), np.uint8)
            self.mask = cv2.erode(self.mask, kernel, iterations=1)
            # crop black regions out
            h, w = self.mask.shape
            self.x_lim = [f(np.where(self.mask[int(h/2), :])[0])
                          for f in [np.min, np.max]]
            self.y_lim = [f(np.where(self.mask[:, int(w/2)])[0])
                          for f in [np.min, np.max]] 
开发者ID:ethz-asl,项目名称:hierarchical_loc,代码行数:27,代码来源:nclt.py

示例13: call

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def call(self, inputs):
    """Standard Keras call() method."""
    if inputs.dtype not in [tf.uint8, tf.int32, tf.int64]:
      inputs = tf.cast(inputs, dtype=tf.int32)

    if self.default_input_value is not None:
      default_input_value_tensor = tf.constant(
          int(self.default_input_value),
          dtype=inputs.dtype,
          name=DEFAULT_INPUT_VALUE_NAME)
      replacement = tf.zeros_like(inputs) + (self.num_buckets - 1)
      inputs = tf.where(
          tf.equal(inputs, default_input_value_tensor), replacement, inputs)

    # We can't use tf.gather_nd(self.kernel, inputs) as it doesn't support
    # constraints (constraint functions are not supported for IndexedSlices).
    # Instead we use matrix multiplication by one-hot encoding of the index.
    if self.units == 1:
      # This can be slightly faster as it uses matmul.
      return tf.matmul(
          tf.one_hot(tf.squeeze(inputs, axis=[-1]), depth=self.num_buckets),
          self.kernel)
    return tf.reduce_sum(
        tf.one_hot(inputs, axis=1, depth=self.num_buckets) * self.kernel,
        axis=1) 
开发者ID:tensorflow,项目名称:lattice,代码行数:27,代码来源:categorical_calibration_layer.py

示例14: parse_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def parse_fn(self, serialized_example):
        features={
            'image/id_name': tf.FixedLenFeature([], tf.string),
            'image/height' : tf.FixedLenFeature([], tf.int64),
            'image/width'  : tf.FixedLenFeature([], tf.int64),
            'image/encoded': tf.FixedLenFeature([], tf.string),
        }
        for name in self.feature_list:
            features[name] = tf.FixedLenFeature([], tf.int64)

        example = tf.parse_single_example(serialized_example, features=features)
        image = tf.decode_raw(example['image/encoded'], tf.uint8)
        raw_height = tf.cast(example['image/height'], tf.int32)
        raw_width = tf.cast(example['image/width'], tf.int32)
        image = tf.reshape(image, [raw_height, raw_width, 3])
        image = tf.image.resize_images(image, size=[self.height, self.width])
        # from IPython import embed; embed(); exit()

        feature_val_list = [tf.cast(example[name], tf.float32) for name in self.feature_list]
        return image, feature_val_list 
开发者ID:Prinsphield,项目名称:DNA-GAN,代码行数:22,代码来源:dataset.py

示例15: draw_keypoints_on_image_array

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import uint8 [as 别名]
def draw_keypoints_on_image_array(image,
                                  keypoints,
                                  color='red',
                                  radius=2,
                                  use_normalized_coordinates=True):
  """Draws keypoints on an image (numpy array).

  Args:
    image: a numpy array with shape [height, width, 3].
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_keypoints_on_image(image_pil, keypoints, color, radius,
                          use_normalized_coordinates)
  np.copyto(image, np.array(image_pil)) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:21,代码来源:visualization_utils.py


注:本文中的tensorflow.uint8方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。