当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.transpose方法代码示例

本文整理汇总了Python中tensorflow.transpose方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.transpose方法的具体用法?Python tensorflow.transpose怎么用?Python tensorflow.transpose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.transpose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_lr_rfeinman

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg):
    """
    TODO
    :param densities_pos:
    :param densities_neg:
    :param uncerts_pos:
    :param uncerts_neg:
    :return:
    """
    values_neg = np.concatenate(
        (densities_neg.reshape((1, -1)),
         uncerts_neg.reshape((1, -1))),
        axis=0).transpose([1, 0])
    values_pos = np.concatenate(
        (densities_pos.reshape((1, -1)),
         uncerts_pos.reshape((1, -1))),
        axis=0).transpose([1, 0])

    values = np.concatenate((values_neg, values_pos))
    labels = np.concatenate(
        (np.zeros_like(densities_neg), np.ones_like(densities_pos)))

    lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels)

    return values, labels, lr 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:27,代码来源:util.py

示例2: _build_stft_feature

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def _build_stft_feature(self):
        """ Compute STFT of waveform and slice the STFT in segment
         with the right length to feed the network.
        """

        stft_name = self.stft_name
        spec_name = self.spectrogram_name

        if stft_name not in self._features:
            stft_feature = tf.transpose(
                stft(
                    tf.transpose(self._features['waveform']),
                    self._frame_length,
                    self._frame_step,
                    window_fn=lambda frame_length, dtype: (
                        hann_window(frame_length, periodic=True, dtype=dtype)),
                    pad_end=True),
                perm=[1, 2, 0])
            self._features[f'{self._mix_name}_stft'] = stft_feature
        if spec_name not in self._features:
            self._features[spec_name] = tf.abs(
                pad_and_partition(self._features[stft_name], self._T))[:, :, :self._F, :] 
开发者ID:deezer,项目名称:spleeter,代码行数:24,代码来源:__init__.py

示例3: _inverse_stft

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def _inverse_stft(self, stft_t, time_crop=None):
        """ Inverse and reshape the given STFT

        :param stft_t: input STFT
        :returns: inverse STFT (waveform)
        """
        inversed = inverse_stft(
            tf.transpose(stft_t, perm=[2, 0, 1]),
            self._frame_length,
            self._frame_step,
            window_fn=lambda frame_length, dtype: (
                hann_window(frame_length, periodic=True, dtype=dtype))
        ) * self.WINDOW_COMPENSATION_FACTOR
        reshaped = tf.transpose(inversed)
        if time_crop is None:
            time_crop = tf.shape(self._features['waveform'])[0]
        return reshaped[:time_crop, :] 
开发者ID:deezer,项目名称:spleeter,代码行数:19,代码来源:__init__.py

示例4: images_to_sequence

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def images_to_sequence(tensor):
  """Convert a batch of images into a batch of sequences.

  Args:
    tensor: a (num_images, height, width, depth) tensor

  Returns:
    (width, num_images*height, depth) sequence tensor
  """
  transposed = tf.transpose(tensor, [2, 0, 1, 3])

  shapeT = tf.shape(transposed)
  shapeL = transposed.get_shape().as_list()
  # Calculate the ouput size of the upsampled tensor
  n_shape = tf.stack([
      shapeT[0],
      shapeT[1]*shapeT[2],
      shapeL[3]
  ])
  reshaped = tf.reshape(transposed, n_shape)
  return reshaped 
开发者ID:TobiasGruening,项目名称:ARU-Net,代码行数:23,代码来源:layers.py

示例5: sequence_to_images

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def sequence_to_images(tensor, num_batches):
  """Convert a batch of sequences into a batch of images.

  Args:
    tensor: (num_steps, num_batchesRNN, depth) sequence tensor
    num_batches: the number of image batches

  Returns:
    (num_batches, height, width, depth) tensor
  """

  shapeT = tf.shape(tensor)
  shapeL = tensor.get_shape().as_list()
  # Calculate the ouput size of the upsampled tensor
  height = tf.to_int32(shapeT[1] / num_batches)
  n_shape = tf.stack([
      shapeT[0],
      num_batches,
      height,
      shapeL[2]
  ])

  reshaped = tf.reshape(tensor, n_shape)
  return tf.transpose(reshaped, [1, 2, 0, 3]) 
开发者ID:TobiasGruening,项目名称:ARU-Net,代码行数:26,代码来源:layers.py

示例6: decode_topk

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def decode_topk(self, sess, latest_tokens, enc_top_states, dec_init_states):
    """Return the topK results and new decoder states."""
    feed = {
        self._enc_top_states: enc_top_states,
        self._dec_in_state:
            np.squeeze(np.array(dec_init_states)),
        self._abstracts:
            np.transpose(np.array([latest_tokens])),
        self._abstract_lens: np.ones([len(dec_init_states)], np.int32)}

    results = sess.run(
        [self._topk_ids, self._topk_log_probs, self._dec_out_state],
        feed_dict=feed)

    ids, probs, states = results[0], results[1], results[2]
    new_states = [s for s in states]
    return ids, probs, new_states 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:seq2seq_attention_model.py

示例7: unsqueeze_2x2

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def unsqueeze_2x2(input_):
    """Unsqueezing operation: reshape to convert channels into space."""
    if isinstance(input_, (float, int)):
        return input_
    shape = input_.get_shape().as_list()
    batch_size = shape[0]
    height = shape[1]
    width = shape[2]
    channels = shape[3]
    if channels % 4 != 0:
        raise ValueError("Number of channels not divisible by 4.")
    res = tf.reshape(input_, [batch_size, height, width, channels // 4, 2, 2])
    res = tf.transpose(res, [0, 1, 4, 2, 5, 3])
    res = tf.reshape(res, [batch_size, 2 * height, 2 * width, channels // 4])

    return res


# batch norm 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:real_nvp_utils.py

示例8: compute_first_or_last

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def compute_first_or_last(self, select, first=True):
    #perform first ot last operation on row select with probabilistic row selection
    answer = tf.zeros_like(select)
    running_sum = tf.zeros([self.batch_size, 1], self.data_type)
    for i in range(self.max_elements):
      if (first):
        current = tf.slice(select, [0, i], [self.batch_size, 1])
      else:
        current = tf.slice(select, [0, self.max_elements - 1 - i],
                           [self.batch_size, 1])
      curr_prob = current * (1 - running_sum)
      curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
      running_sum += curr_prob
      temp_ans = []
      curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
      for i_ans in range(self.max_elements):
        if (not (first) and i_ans == self.max_elements - 1 - i):
          temp_ans.append(curr_prob)
        elif (first and i_ans == i):
          temp_ans.append(curr_prob)
        else:
          temp_ans.append(tf.zeros_like(curr_prob))
      temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
      answer += temp_ans
    return answer 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:27,代码来源:model.py

示例9: convert_network_state_tensorarray

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def convert_network_state_tensorarray(tensorarray):
  """Converts a source TensorArray to a source Tensor.

  Performs a permutation between the steps * [stride, D] shape of a
  source TensorArray and the (flattened) [stride * steps, D] shape of
  a source Tensor.

  The TensorArrays used during recurrence have an additional zeroth step that
  needs to be removed.

  Args:
    tensorarray: TensorArray object to be converted.

  Returns:
    Tensor object after conversion.
  """
  tensor = tensorarray.stack()  # Results in a [steps, stride, D] tensor.
  tensor = tf.slice(tensor, [1, 0, 0], [-1, -1, -1])  # Lop off the 0th step.
  tensor = tf.transpose(tensor, [1, 0, 2])  # Switch steps and stride.
  return tf.reshape(tensor, [-1, tf.shape(tensor)[2]]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:22,代码来源:network_units.py

示例10: rotate_dimensions

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def rotate_dimensions(num_dims, src_dim, dest_dim):
  """Returns a list of dimension indices that will rotate src_dim to dest_dim.

  src_dim is moved to dest_dim, with all intervening dimensions shifted towards
  the hole left by src_dim. Eg:
  num_dims = 4, src_dim=3, dest_dim=1
  Returned list=[0, 3, 1, 2]
  For a tensor with dims=[5, 4, 3, 2] a transpose would yield [5, 2, 4, 3].
  Args:
    num_dims: The number of dimensions to handle.
    src_dim:  The dimension to move.
    dest_dim: The dimension to move src_dim to.

  Returns:
    A list of rotated dimension indices.
  """
  # List of dimensions for transpose.
  dim_list = range(num_dims)
  # Shuffle src_dim to dest_dim by swapping to shuffle up the other dims.
  step = 1 if dest_dim > src_dim else -1
  for x in xrange(src_dim, dest_dim, step):
    dim_list[x], dim_list[x + step] = dim_list[x + step], dim_list[x]
  return dim_list 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:shapes.py

示例11: intersection

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def intersection(boxlist1, boxlist2, scope=None):
  """Compute pairwise intersection areas between boxes.

  Args:
    boxlist1: BoxList holding N boxes
    boxlist2: BoxList holding M boxes
    scope: name scope.

  Returns:
    a tensor with shape [N, M] representing pairwise intersections
  """
  with tf.name_scope(scope, 'Intersection'):
    y_min1, x_min1, y_max1, x_max1 = tf.split(
        value=boxlist1.get(), num_or_size_splits=4, axis=1)
    y_min2, x_min2, y_max2, x_max2 = tf.split(
        value=boxlist2.get(), num_or_size_splits=4, axis=1)
    all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
    all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
    intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
    all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
    all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
    intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
    return intersect_heights * intersect_widths 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:box_list_ops.py

示例12: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def __init__(self, num_experts, gates):
    """Create a SparseDispatcher.

    Args:
      num_experts: an integer.
      gates: a `Tensor` of shape `[batch_size, num_experts]`.

    Returns:
      a SparseDispatcher
    """
    self._gates = gates
    self._num_experts = num_experts

    where = tf.to_int32(tf.where(tf.transpose(gates) > 0))
    self._expert_index, self._batch_index = tf.unstack(where, num=2, axis=1)
    self._part_sizes_tensor = tf.reduce_sum(tf.to_int32(gates > 0), [0])
    self._nonzero_gates = tf.gather(
        tf.reshape(self._gates, [-1]),
        self._batch_index * num_experts + self._expert_index) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:21,代码来源:expert_utils.py

示例13: neural_gpu_body

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def neural_gpu_body(inputs, hparams, name=None):
  """The core Neural GPU."""
  with tf.variable_scope(name, "neural_gpu"):

    def step(state, inp):  # pylint: disable=missing-docstring
      x = tf.nn.dropout(state, 1.0 - hparams.dropout)
      for layer in range(hparams.num_hidden_layers):
        x = common_layers.conv_gru(
            x, (hparams.kernel_height, hparams.kernel_width),
            hparams.hidden_size,
            name="cgru_%d" % layer)
      # Padding input is zeroed-out in the modality, we check this by summing.
      padding_inp = tf.less(tf.reduce_sum(tf.abs(inp), axis=[1, 2]), 0.00001)
      new_state = tf.where(padding_inp, state, x)  # No-op where inp is padding.
      return new_state

    return tf.foldl(
        step,
        tf.transpose(inputs, [1, 0, 2, 3]),
        initializer=inputs,
        parallel_iterations=1,
        swap_memory=True) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:24,代码来源:neural_gpu.py

示例14: vq_nearest_neighbor

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def vq_nearest_neighbor(x, hparams):
  """Find the nearest element in means to elements in x."""
  bottleneck_size = 2**hparams.bottleneck_bits
  means = hparams.means
  x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
  means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
  scalar_prod = tf.matmul(x, means, transpose_b=True)
  dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
  if hparams.bottleneck_kind == "em":
    x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
    x_means_hot = tf.one_hot(
        x_means_idx, depth=bottleneck_size)
    x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
  else:
    x_means_idx = tf.argmax(-dist, axis=-1)
    x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
  x_means = tf.matmul(x_means_hot, means)
  e_loss = tf.reduce_mean(tf.square(x - tf.stop_gradient(x_means)))
  return x_means_hot, e_loss 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:21,代码来源:transformer_nat.py

示例15: rank_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import transpose [as 别名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
  """Experimental rank loss, thanks to kkurach@ for the code."""
  with tf.name_scope("rank_loss"):
    # Normalize first as this is assumed in cosine similarity later.
    sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
    image_emb = tf.nn.l2_normalize(image_emb, 1)
    # Both sentence_emb and image_emb have size [batch, depth].
    scores = tf.matmul(image_emb, tf.transpose(sentence_emb))  # [batch, batch]
    diagonal = tf.diag_part(scores)  # [batch]
    cost_s = tf.maximum(0.0, margin - diagonal + scores)  # [batch, batch]
    cost_im = tf.maximum(
        0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores)  # [batch, batch]
    # Clear diagonals.
    batch_size = tf.shape(sentence_emb)[0]
    empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
    cost_s *= empty_diagonal_mat
    cost_im *= empty_diagonal_mat
    return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:20,代码来源:slicenet.py


注:本文中的tensorflow.transpose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。