当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.top_k方法代码示例

本文整理汇总了Python中tensorflow.top_k方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.top_k方法的具体用法?Python tensorflow.top_k怎么用?Python tensorflow.top_k使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.top_k方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _MyTopK

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import top_k [as 别名]
def _MyTopK(x, k):
  """GPU-compatible version of top-k that works for very small constant k.

  Calls argmax repeatedly.

  Args:
    x: a 2d Tensor.
    k: a small integer.

  Returns:
    values: a Tensor of shape [batch_size, k]
    indices: a int32 Tensor of shape [batch_size, k]
  """
  if k > 10:
    return tf.nn.top_k(x, k)
  values = []
  indices = []
  depth = tf.shape(x)[1]
  for i in xrange(k):
    values.append(tf.reduce_max(x, 1))
    argmax = tf.argmax(x, 1)
    indices.append(argmax)
    if i + 1 < k:
      x += tf.one_hot(argmax, depth, -1e9)
  return tf.stack(values, axis=1), tf.to_int32(tf.stack(indices, axis=1)) 
开发者ID:ZhenYangIACAS,项目名称:NMT_GAN,代码行数:27,代码来源:expert_utils.py

示例2: _my_top_k

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import top_k [as 别名]
def _my_top_k(x, k):
  """GPU-compatible version of top-k that works for very small constant k.

  Calls argmax repeatedly.

  tf.nn.top_k is implemented for GPU, but the gradient, sparse_to_dense,
  seems not to be, so if we use tf.nn.top_k, then both the top_k and its
  gradient go on cpu.  Once this is not an issue, this function becomes
  obsolete and should be replaced by tf.nn.top_k.

  Args:
    x: a 2d Tensor.
    k: a small integer.

  Returns:
    values: a Tensor of shape [batch_size, k]
    indices: a int32 Tensor of shape [batch_size, k]
  """
  if k > 10:
    return tf.nn.top_k(x, k)
  values = []
  indices = []
  depth = tf.shape(x)[1]
  for i in range(k):
    values.append(tf.reduce_max(x, 1))
    argmax = tf.argmax(x, 1)
    indices.append(argmax)
    if i + 1 < k:
      x += tf.one_hot(argmax, depth, -1e9)
  return tf.stack(values, axis=1), tf.to_int32(tf.stack(indices, axis=1)) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:32,代码来源:expert_utils.py

示例3: _prob_in_top_k

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import top_k [as 别名]
def _prob_in_top_k(
    clean_values, noisy_values, noise_stddev, noisy_top_values, k):
  """Helper function to NoisyTopKGating.

  Computes the probability that value is in top k, given different random noise.

  This gives us a way of backpropagating from a loss that balances the number
  of times each expert is in the top k experts per example.

  In the case of no noise, pass in None for noise_stddev, and the result will
  not be differentiable.

  Args:
    clean_values: a `Tensor` of shape [batch, n].
    noisy_values: a `Tensor` of shape [batch, n].  Equal to clean values plus
      normally distributed noise with standard deviation noise_stddev.
    noise_stddev: a `Tensor` of shape [batch, n], or None
    noisy_top_values: a `Tensor` of shape [batch, m].
       "values" Output of tf.top_k(noisy_top_values, m).  m >= k+1
    k: an integer.

  Returns:
    a `Tensor` of shape [batch, n].
  """
  batch = tf.shape(clean_values)[0]
  m = tf.shape(noisy_top_values)[1]
  top_values_flat = tf.reshape(noisy_top_values, [-1])
  # we want to compute the threshold that a particular value would have to
  # exceed in order to make the top k.  This computation differs depending
  # on whether the value is already in the top k.
  threshold_positions_if_in = tf.range(batch) * m + k
  threshold_if_in = tf.expand_dims(
      tf.gather(top_values_flat, threshold_positions_if_in), 1)
  is_in = tf.greater(noisy_values, threshold_if_in)
  if noise_stddev is None:
    return tf.to_float(is_in)
  threshold_positions_if_out = threshold_positions_if_in - 1
  threshold_if_out = tf.expand_dims(
      tf.gather(top_values_flat, threshold_positions_if_out), 1)
  # is each value currently in the top k.
  prob_if_in = _normal_distribution_cdf(clean_values - threshold_if_in,
                                        noise_stddev)
  prob_if_out = _normal_distribution_cdf(clean_values - threshold_if_out,
                                         noise_stddev)
  prob = tf.where(is_in, prob_if_in, prob_if_out)
  return prob 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:48,代码来源:expert_utils.py

示例4: _ProbInTopK

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import top_k [as 别名]
def _ProbInTopK(clean_values, noisy_values, noise_stddev, noisy_top_values, k):
  """Helper function to NoisyTopKGating.

  Computes the probability that value is in top k, given different random noise.

  This gives us a way of backpropagating from a loss that balances the number
  of times each expert is in the top k experts per example.

  In the case of no noise, pass in None for noise_stddev, and the result will
  not be differentiable.

  Args:
    clean_values: a `Tensor` of shape [batch, n].
    noisy_values: a `Tensor` of shape [batch, n].  Equal to clean values plus
      normally distributed noise with standard deviation noise_stddev.
    noise_stddev: a `Tensor` of shape [batch, n], or None
    noisy_top_values: a `Tensor` of shape [batch, m].
       'values' Output of tf.top_k(noisy_top_values, m).  m >= k+1
    k: an integer.

  Returns:
    a `Tensor` of shape [batch, n].
  """
  batch = tf.shape(clean_values)[0]
  m = tf.shape(noisy_top_values)[1]
  top_values_flat = tf.reshape(noisy_top_values, [-1])
  # we want to compute the threshold that a particular value would have to
  # exceed in order to make the top k.  This computation differs depending
  # on whether the value is already in the top k.
  threshold_positions_if_in = tf.range(batch) * m + k
  threshold_if_in = tf.expand_dims(
      tf.gather(top_values_flat, threshold_positions_if_in), 1)
  is_in = tf.greater(noisy_values, threshold_if_in)
  if noise_stddev is None:
    return tf.to_float(is_in)
  threshold_positions_if_out = threshold_positions_if_in - 1
  threshold_if_out = tf.expand_dims(
      tf.gather(top_values_flat, threshold_positions_if_out), 1)
  # is each value currently in the top k.
  prob_if_in = _NormalDistributionCDF(clean_values - threshold_if_in,
                                      noise_stddev)
  prob_if_out = _NormalDistributionCDF(clean_values - threshold_if_out,
                                       noise_stddev)
  prob = tf.where(is_in, prob_if_in, prob_if_out)
  return prob 
开发者ID:ZhenYangIACAS,项目名称:NMT_GAN,代码行数:47,代码来源:expert_utils.py


注:本文中的tensorflow.top_k方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。