本文整理汇总了Python中tensorflow.to_float方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.to_float方法的具体用法?Python tensorflow.to_float怎么用?Python tensorflow.to_float使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.to_float方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_test_input
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def create_test_input(batch_size, height, width, channels):
"""Create test input tensor.
Args:
batch_size: The number of images per batch or `None` if unknown.
height: The height of each image or `None` if unknown.
width: The width of each image or `None` if unknown.
channels: The number of channels per image or `None` if unknown.
Returns:
Either a placeholder `Tensor` of dimension
[batch_size, height, width, channels] if any of the inputs are `None` or a
constant `Tensor` with the mesh grid values along the spatial dimensions.
"""
if None in [batch_size, height, width, channels]:
return tf.placeholder(tf.float32, (batch_size, height, width, channels))
else:
return tf.to_float(
np.tile(
np.reshape(
np.reshape(np.arange(height), [height, 1]) +
np.reshape(np.arange(width), [1, width]),
[1, height, width, 1]),
[batch_size, 1, 1, channels]))
示例2: preprocess_image
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def preprocess_image(image, output_height, output_width, is_training):
"""Preprocesses the given image.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
is_training: `True` if we're preprocessing the image for training and
`False` otherwise.
Returns:
A preprocessed image.
"""
image = tf.to_float(image)
image = tf.image.resize_image_with_crop_or_pad(
image, output_width, output_height)
image = tf.subtract(image, 128.0)
image = tf.div(image, 128.0)
return image
示例3: preprocess_for_eval
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def preprocess_for_eval(image, output_height, output_width, resize_side):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
resize_side: The smallest side of the image for aspect-preserving resizing.
Returns:
A preprocessed image.
"""
image = _aspect_preserving_resize(image, resize_side)
image = _central_crop([image], output_height, output_width)[0]
image.set_shape([output_height, output_width, 3])
image = tf.to_float(image)
return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])
示例4: preprocess_for_eval
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def preprocess_for_eval(image, output_height, output_width):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
Returns:
A preprocessed image.
"""
tf.summary.image('image', tf.expand_dims(image, 0))
# Transform the image to floats.
image = tf.to_float(image)
# Resize and crop if needed.
resized_image = tf.image.resize_image_with_crop_or_pad(image,
output_width,
output_height)
tf.summary.image('resized_image', tf.expand_dims(resized_image, 0))
# Subtract off the mean and divide by the variance of the pixels.
return tf.image.per_image_standardization(resized_image)
示例5: pass_through_embedding_matrix
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def pass_through_embedding_matrix(act_block, embedding_matrix, step_idx):
"""Passes the activations through the embedding_matrix.
Takes care to handle out of bounds lookups.
Args:
act_block: matrix of activations.
embedding_matrix: matrix of weights.
step_idx: vector containing step indices, with -1 indicating out of bounds.
Returns:
the embedded activations.
"""
# Indicator vector for out of bounds lookups.
step_idx_mask = tf.expand_dims(tf.equal(step_idx, -1), -1)
# Pad the last column of the activation vectors with the indicator.
act_block = tf.concat([act_block, tf.to_float(step_idx_mask)], 1)
return tf.matmul(act_block, embedding_matrix)
示例6: _export_inference_graph
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def _export_inference_graph(input_type,
detection_model,
use_moving_averages,
checkpoint_path,
inference_graph_path,
export_as_saved_model=False):
"""Export helper."""
if input_type not in input_placeholder_fn_map:
raise ValueError('Unknown input type: {}'.format(input_type))
inputs = tf.to_float(input_placeholder_fn_map[input_type]())
preprocessed_inputs = detection_model.preprocess(inputs)
output_tensors = detection_model.predict(preprocessed_inputs)
postprocessed_tensors = detection_model.postprocess(output_tensors)
outputs = _add_output_tensor_nodes(postprocessed_tensors)
out_node_names = list(outputs.keys())
if export_as_saved_model:
_write_saved_model(inference_graph_path, inputs, outputs, checkpoint_path,
use_moving_averages)
else:
_write_inference_graph(inference_graph_path, checkpoint_path,
use_moving_averages,
output_node_names=','.join(out_node_names))
示例7: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def __init__(self, num_keypoints, scale_factors=None):
"""Constructor for KeypointBoxCoder.
Args:
num_keypoints: Number of keypoints to encode/decode.
scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
In addition to scaling ty and tx, the first 2 scalars are used to scale
the y and x coordinates of the keypoints as well. If set to None, does
not perform scaling.
"""
self._num_keypoints = num_keypoints
if scale_factors:
assert len(scale_factors) == 4
for scalar in scale_factors:
assert scalar > 0
self._scale_factors = scale_factors
self._keypoint_scale_factors = None
if scale_factors is not None:
self._keypoint_scale_factors = tf.expand_dims(tf.tile(
[tf.to_float(scale_factors[0]), tf.to_float(scale_factors[1])],
[num_keypoints]), 1)
示例8: testRandomPixelValueScale
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def testRandomPixelValueScale(self):
preprocessing_options = []
preprocessing_options.append((preprocessor.normalize_image, {
'original_minval': 0,
'original_maxval': 255,
'target_minval': 0,
'target_maxval': 1
}))
preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
images = self.createTestImages()
tensor_dict = {fields.InputDataFields.image: images}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
images_min = tf.to_float(images) * 0.9 / 255.0
images_max = tf.to_float(images) * 1.1 / 255.0
images = tensor_dict[fields.InputDataFields.image]
values_greater = tf.greater_equal(images, images_min)
values_less = tf.less_equal(images, images_max)
values_true = tf.fill([1, 4, 4, 3], True)
with self.test_session() as sess:
(values_greater_, values_less_, values_true_) = sess.run(
[values_greater, values_less, values_true])
self.assertAllClose(values_greater_, values_true_)
self.assertAllClose(values_less_, values_true_)
示例9: compute_upsample_values
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def compute_upsample_values(input_tensor, upsample_height, upsample_width):
"""Compute values for an upsampling op (ops.BatchCropAndResize).
Args:
input_tensor: image tensor with shape [batch, height, width, in_channels]
upsample_height: integer
upsample_width: integer
Returns:
grid_centers: tensor with shape [batch, 1]
crop_sizes: tensor with shape [batch, 1]
output_height: integer
output_width: integer
"""
batch, input_height, input_width, _ = input_tensor.shape
height_half = input_height / 2.
width_half = input_width / 2.
grid_centers = tf.constant(batch * [[height_half, width_half]])
crop_sizes = tf.constant(batch * [[input_height, input_width]])
output_height = input_height * upsample_height
output_width = input_width * upsample_width
return grid_centers, tf.to_float(crop_sizes), output_height, output_width
示例10: _testBuildDefaultModel
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def _testBuildDefaultModel(self):
images = tf.to_float(np.random.rand(32, 28, 28, 1))
labels = {}
labels['classes'] = tf.one_hot(
tf.to_int32(np.random.randint(0, 9, (32))), 10)
params = {
'use_separation': True,
'layers_to_regularize': 'fc3',
'weight_decay': 0.0,
'ps_tasks': 1,
'domain_separation_startpoint': 1,
'alpha_weight': 1,
'beta_weight': 1,
'gamma_weight': 1,
'recon_loss_name': 'sum_of_squares',
'decoder_name': 'small_decoder',
'encoder_name': 'default_encoder',
}
return images, labels, params
示例11: padded_accuracy_topk
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def padded_accuracy_topk(predictions,
labels,
k,
weights_fn=common_layers.weights_nonzero):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with tf.variable_scope("padded_accuracy_topk", values=[predictions, labels]):
padded_predictions, padded_labels = common_layers.pad_with_zeros(
predictions, labels)
weights = weights_fn(padded_labels)
effective_k = tf.minimum(k,
common_layers.shape_list(padded_predictions)[-1])
_, outputs = tf.nn.top_k(padded_predictions, k=effective_k)
outputs = tf.to_int32(outputs)
padded_labels = tf.to_int32(padded_labels)
padded_labels = tf.expand_dims(padded_labels, axis=-1)
padded_labels += tf.zeros_like(outputs) # Pad to same shape.
same = tf.to_float(tf.equal(outputs, padded_labels))
same_topk = tf.reduce_sum(same, axis=-1)
return same_topk, weights
示例12: set_precision
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def set_precision(predictions, labels,
weights_fn=common_layers.weights_nonzero):
"""Precision of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_precision", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例13: set_recall
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def set_recall(predictions, labels, weights_fn=common_layers.weights_nonzero):
"""Recall of set predictions.
Args:
predictions : A Tensor of scores of shape [batch, nlabels].
labels: A Tensor of int32s giving true set elements,
of shape [batch, seq_length].
weights_fn: A function to weight the elements.
Returns:
hits: A Tensor of shape [batch, nlabels].
weights: A Tensor of shape [batch, nlabels].
"""
with tf.variable_scope("set_recall", values=[predictions, labels]):
labels = tf.squeeze(labels, [2, 3])
weights = weights_fn(labels)
labels = tf.one_hot(labels, predictions.shape[-1])
labels = tf.reduce_max(labels, axis=1)
labels = tf.cast(labels, tf.bool)
return tf.to_float(tf.equal(labels, predictions)), weights
示例14: cv_squared
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def cv_squared(x):
"""The squared coefficient of variation of a sample.
Useful as a loss to encourage a positive distribution to be more uniform.
Epsilons added for numerical stability.
Returns 0 for an empty Tensor.
Args:
x: a `Tensor`.
Returns:
a `Scalar`.
"""
epsilon = 1e-10
float_size = tf.to_float(tf.size(x)) + epsilon
mean = tf.reduce_sum(x) / float_size
variance = tf.reduce_sum(tf.square(x - mean)) / float_size
return variance / (tf.square(mean) + epsilon)
示例15: diet_expert
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import to_float [as 别名]
def diet_expert(x, hidden_size, params):
"""A two-layer feed-forward network with relu activation on hidden layer.
Uses diet variables.
Recomputes hidden layer on backprop to save activation memory.
Args:
x: a Tensor with shape [batch, io_size]
hidden_size: an integer
params: a diet variable HParams object.
Returns:
a Tensor with shape [batch, io_size]
"""
@fn_with_diet_vars(params)
def diet_expert_internal(x):
dim = x.get_shape().as_list()[-1]
h = tf.layers.dense(x, hidden_size, activation=tf.nn.relu, use_bias=False)
y = tf.layers.dense(h, dim, use_bias=False)
y *= tf.rsqrt(tf.to_float(dim * hidden_size))
return y
return diet_expert_internal(x)