本文整理汇总了Python中tensorflow.timestamp方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.timestamp方法的具体用法?Python tensorflow.timestamp怎么用?Python tensorflow.timestamp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.timestamp方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: tf_times
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import timestamp [as 别名]
def tf_times():
"""Returns (time since start, time since last) as a tensorflow op."""
# Keep track of start and last times
with tf.init_scope():
init = tf.timestamp()
def make(name):
return tf.Variable(init, name=name, trainable=False, use_resource=True)
start = make('start_time')
last = make('last_time')
# Get new time and update last
now = tf.timestamp()
prev = last.read_value()
with tf.control_dependencies([prev]):
with tf.control_dependencies([last.assign(now)]):
return tf.cast(now - start.read_value(), tf.float32), tf.cast(now - prev, tf.float32)
示例2: begin
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import timestamp [as 别名]
def begin(self):
with tf.name_scope(_SCOPE_NAME):
# See _get_or_create_timing_vars for the definitions of these variables.
timing_vars = _get_or_create_timing_vars()
# An op to produce a tensor with the latest timestamp.
self._end_op = _seconds_to_internal_time(tf.timestamp(name='end'))
# An op to update the timing_vars.start_timestamp variable.
self._start_op = tf.cond(
pred=tf.equal(timing_vars.steps, 0),
true_fn=lambda: timing_vars.start_timestamp.assign(self._end_op),
false_fn=lambda: timing_vars.start_timestamp)
# An op to update the step.
with tf.control_dependencies([self._start_op]):
self._step_op = timing_vars.steps.assign_add(1)
# An op to compute the timing_vars.total_time variable.
self._total_op = timing_vars.total_time.assign(
timing_vars.previous_time +
_internal_time_to_seconds(self._end_op - self._start_op))
示例3: log_deferred
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import timestamp [as 别名]
def log_deferred(op, log_id, every_n=1, first_n=None):
"""Helper method inserting compliance logging ops.
Note: This helper is not guaranteed to be efficient, as it will insert ops
and control dependencies. If this proves to be a bottleneck, submitters
may wish to consider other methods such as extracting values from an
.events file.
Args:
op: A tf op to be printed.
log_id: a uuid provided by the logger in mlperf_log.py
every_n: If repeat is True, with what frequency should the input op be '
logged. If repeat is False, this argument is ignored.
first_n: Only log this many values. This arg does not interact with every_n.
The first_n refers to the first n that would have been logged.
"""
prefix = ":::MLPv0.5.0 [{}]".format(log_id)
if not first_n is not None and first_n == 1:
return tf.compat.v1.Print(op, [tf.timestamp(), op], message=prefix, first_n=1)
counter = tf.Variable(tf.zeros(shape=(), dtype=tf.int32) - 1,
aggregation=tf.VariableAggregation.MEAN)
increment = tf.compat.v1.assign_add(counter, 1, use_locking=True)
return tf.cond(
pred=tf.equal(tf.math.mod(increment, every_n), 0),
true_fn=lambda :tf.compat.v1.Print(op, [tf.timestamp(), op], message=prefix,
first_n=first_n),
false_fn=lambda :op
)
示例4: log_deferred
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import timestamp [as 别名]
def log_deferred(op, log_id, every_n=1, first_n=None):
"""Helper method inserting compliance logging ops.
Note: This helper is not guaranteed to be efficient, as it will insert ops
and control dependencies. If this proves to be a bottleneck, submitters
may wish to consider other methods such as extracting values from an
.events file.
Args:
op: A tf op to be printed.
log_id: a uuid provided by the logger in mlperf_log.py
every_n: If repeat is True, with what frequency should the input op be '
logged. If repeat is False, this argument is ignored.
first_n: Only log this many values. This arg does not interact with every_n.
The first_n refers to the first n that would have been logged.
"""
prefix = ":::MLPv0.5.0 [{}]".format(log_id)
if not first_n is not None and first_n == 1:
return tf.Print(op, [tf.timestamp(), op], message=prefix, first_n=1)
counter = tf.Variable(tf.zeros(shape=(), dtype=tf.int32) - 1,
aggregation=tf.VariableAggregation.MEAN)
increment = tf.assign_add(counter, 1, use_locking=True)
return tf.cond(
tf.equal(tf.mod(increment, every_n), 0),
lambda :tf.Print(op, [tf.timestamp(), op], message=prefix,
first_n=first_n),
lambda :op
)
示例5: get_iterative_process_for_example_with_unused_tf_computation_arg
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import timestamp [as 别名]
def get_iterative_process_for_example_with_unused_tf_computation_arg():
"""Returns an iterative process with a @tf.function with an unused arg."""
server_state_type = computation_types.NamedTupleType([('num_clients',
tf.int32)])
def _bind_tf_function(unused_input, tf_func):
tf_wrapper = tf.function(lambda _: tf_func())
input_federated_type = unused_input.type_signature
wrapper = computations.tf_computation(tf_wrapper,
input_federated_type.member)
return intrinsics.federated_map(wrapper, unused_input)
def count_clients_federated(client_data):
@tf.function
def client_ones_fn():
return tf.ones(shape=[], dtype=tf.int32)
client_ones = _bind_tf_function(client_data, client_ones_fn)
return intrinsics.federated_sum(client_ones)
@computations.federated_computation
def init_fn():
return intrinsics.federated_value(
collections.OrderedDict(num_clients=0), placements.SERVER)
@computations.federated_computation([
computation_types.FederatedType(server_state_type, placements.SERVER),
computation_types.FederatedType(
computation_types.SequenceType(tf.string), placements.CLIENTS)
])
def next_fn(server_state, client_val):
"""`next` function for `tff.templates.IterativeProcess`."""
server_update = intrinsics.federated_zip(
collections.OrderedDict(
num_clients=count_clients_federated(client_val)))
server_output = intrinsics.federated_value((), placements.SERVER)
server_output = intrinsics.federated_sum(
_bind_tf_function(
intrinsics.federated_broadcast(server_state), tf.timestamp))
return server_update, server_output
return iterative_process.IterativeProcess(init_fn, next_fn)