本文整理汇总了Python中tensorflow.tensor方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.tensor方法的具体用法?Python tensorflow.tensor怎么用?Python tensorflow.tensor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: from_float32_to_uint8
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def from_float32_to_uint8(
tensor,
tensor_key='tensor',
min_key='min',
max_key='max'):
"""
:param tensor:
:param tensor_key:
:param min_key:
:param max_key:
:returns:
"""
tensor_min = tf.reduce_min(tensor)
tensor_max = tf.reduce_max(tensor)
return {
tensor_key: tf.cast(
(tensor - tensor_min) / (tensor_max - tensor_min + 1e-16)
* 255.9999, dtype=tf.uint8),
min_key: tensor_min,
max_key: tensor_max
}
示例2: check_tensor_shape
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def check_tensor_shape(tensor_tf, target_shape):
""" Return a Tensorflow boolean graph that indicates whether
sample[features_key] has the specified target shape. Only check
not None entries of target_shape.
:param tensor_tf: Tensor to check shape for.
:param target_shape: Target shape to compare tensor to.
:returns: True if shape is valid, False otherwise (as TF boolean).
"""
result = tf.constant(True)
for i, target_length in enumerate(target_shape):
if target_length:
result = tf.logical_and(
result,
tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i]))
return result
示例3: call
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def call(self, inputs):
"""Invokes this layer.
Parameters
----------
inputs: list
Should be of form `inputs=[coords, nbr_list]` where `coords` is a tensor of shape `(None, N, 3)` and `nbr_list` is a list.
"""
if len(inputs) != 2:
raise ValueError("InteratomicDistances requires coords,nbr_list")
coords, nbr_list = (inputs[0], inputs[1])
N_atoms, M_nbrs, ndim = self.N_atoms, self.M_nbrs, self.ndim
# Shape (N_atoms, M_nbrs, ndim)
nbr_coords = tf.gather(coords, nbr_list)
# Shape (N_atoms, M_nbrs, ndim)
tiled_coords = tf.tile(
tf.reshape(coords, (N_atoms, 1, ndim)), (1, M_nbrs, 1))
# Shape (N_atoms, M_nbrs)
return tf.reduce_sum((tiled_coords - nbr_coords)**2, axis=2)
示例4: distance_matrix
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def distance_matrix(self, D):
"""Calcuates the distance matrix from the distance tensor
B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features
Parameters
----------
D: tf.Tensor of shape (B, N, M, d)
Distance tensor.
Returns
-------
R: tf.Tensor of shape (B, N, M)
Distance matrix.
"""
R = tf.reduce_sum(tf.multiply(D, D), 3)
R = tf.sqrt(R)
return R
示例5: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def __init__(self, num_filters, **kwargs):
"""
Parameters
----------
num_filters: int
Number of filters to have in the output
in_layers: list of Layers or tensors
[V, A, mask]
V are the vertex features must be of shape (batch, vertex, channel)
A are the adjacency matrixes for each graph
Shape (batch, from_vertex, adj_matrix, to_vertex)
mask is optional, to be used when not every graph has the
same number of vertices
Returns: tf.tensor
Returns a tf.tensor with a graph convolution applied
The shape will be (batch, vertex, self.num_filters)
"""
super(GraphCNN, self).__init__(**kwargs)
self.num_filters = num_filters
示例6: call
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def call(self, inputs, training=None):
"""
:Note: Equivalent to __call__()
:param inputs: Tensor to be applied
:type inputs: tf.Tensor
:return: Tensor after applying the layer which is just the original tensor
:rtype: tf.Tensor
"""
if self.always_on:
return tf.stop_gradient(inputs)
else:
if training is None:
training = tfk.backend.learning_phase()
output_tensor = tf.where(tf.equal(training, True), tf.stop_gradient(inputs), inputs)
output_tensor._uses_learning_phase = True
return output_tensor
示例7: _deconvolution
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def _deconvolution(graph, sess, op_tensor, X, feed_dict):
out = []
with graph.as_default() as g:
# get shape of tensor
tensor_shape = op_tensor.get_shape().as_list()
with sess.as_default() as sess:
# creating placeholders to pass featuremaps and
# creating gradient ops
featuremap = [tf.placeholder(tf.int32) for i in range(config["N"])]
reconstruct = [tf.gradients(tf.transpose(tf.transpose(op_tensor)[featuremap[i]]), X)[0] for i in range(config["N"])]
# Execute the gradient operations in batches of 'n'
for i in range(0, tensor_shape[-1], config["N"]):
c = 0
for j in range(config["N"]):
if (i + j) < tensor_shape[-1]:
feed_dict[featuremap[j]] = i + j
c += 1
if c > 0:
out.extend(sess.run(reconstruct[:c], feed_dict = feed_dict))
return out
示例8: shared
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def shared(self, in_layers):
"""
Create a copy of this layer that shares variables with it.
This is similar to clone(), but where clone() creates two independent layers,
this causes the layers to share variables with each other.
Parameters
----------
in_layers: list tensor
List in tensors for the shared layer
Returns
-------
Layer
"""
if self.variable_scope == '':
return self.clone(in_layers)
raise ValueError('%s does not implement shared()' % self.__class__.__name__)
示例9: set_summary
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def set_summary(self, summary_op, summary_description=None, collections=None):
"""Annotates a tensor with a tf.summary operation
This causes self.out_tensor to be logged to Tensorboard.
Parameters
----------
summary_op: str
summary operation to annotate node
summary_description: object, optional
Optional summary_pb2.SummaryDescription()
collections: list of graph collections keys, optional
New summary op is added to these collections. Defaults to [GraphKeys.SUMMARIES]
"""
supported_ops = {'tensor_summary', 'scalar', 'histogram'}
if summary_op not in supported_ops:
raise ValueError(
"Invalid summary_op arg. Only 'tensor_summary', 'scalar', 'histogram' supported"
)
self.summary_op = summary_op
self.summary_description = summary_description
self.collections = collections
self.tensorboard = True
示例10: add_summary_to_tg
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def add_summary_to_tg(self, tb_input=None):
"""
Create the summary operation for this layer, if set_summary() has been called on it.
Can only be called after self.create_layer to gaurentee that name is not None.
Parameters
----------
tb_input: tensor
the tensor to log to Tensorboard. If None, self.out_tensor is used.
"""
if self.tensorboard == False:
return
if tb_input == None:
tb_input = self.out_tensor
if self.summary_op == "tensor_summary":
tf.summary.tensor_summary(self.name, tb_input, self.summary_description,
self.collections)
elif self.summary_op == 'scalar':
tf.summary.scalar(self.name, tb_input, self.collections)
elif self.summary_op == 'histogram':
tf.summary.histogram(self.name, tb_input, self.collections)
示例11: distance_matrix
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def distance_matrix(self, D):
"""Calcuates the distance matrix from the distance tensor
B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features
Parameters
----------
D: tf.Tensor of shape (B, N, M, d)
Distance tensor.
Returns
-------
R: tf.Tensor of shape (B, N, M)
Distance matrix.
"""
R = tf.reduce_sum(tf.multiply(D, D), 3)
R = tf.sqrt(R)
return R
示例12: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def __init__(self, num_filters, **kwargs):
"""
Parameters
----------
num_filters: int
Number of filters to have in the output
in_layers: list of Layers or tensors
[V, A, mask]
V are the vertex features must be of shape (batch, vertex, channel)
A are the adjacency matrixes for each graph
Shape (batch, from_vertex, adj_matrix, to_vertex)
mask is optional, to be used when not every graph has the
same number of vertices
Returns: tf.tensor
Returns a tf.tensor with a graph convolution applied
The shape will be (batch, vertex, self.num_filters)
"""
self.num_filters = num_filters
super(GraphCNN, self).__init__(**kwargs)
示例13: __dense_p
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def __dense_p(name, x, w=None, output_dim=128, initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0,
bias=0.0):
"""
Fully connected layer
:param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
:param x: (tf.tensor) The input to the layer (N, D).
:param output_dim: (integer) It specifies H, the output second dimension of the fully connected layer [ie:(N, H)]
:param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
:param l2_strength:(weight decay) (float) L2 regularization parameter.
:param bias: (float) Amount of bias. (if not float, it means pretrained bias)
:return out: The output of the layer. (N, H)
"""
n_in = x.get_shape()[-1].value
with tf.variable_scope(name):
if w == None:
w = __variable_with_weight_decay([n_in, output_dim], initializer, l2_strength)
__variable_summaries(w)
if isinstance(bias, float):
bias = tf.get_variable("layer_biases", [output_dim], tf.float32, tf.constant_initializer(bias))
__variable_summaries(bias)
output = tf.nn.bias_add(tf.matmul(x, w), bias)
return output
示例14: avg_pool_2d
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def avg_pool_2d(x, size=(2, 2), stride=(2, 2), name='avg_pooling'):
"""
Average pooling 2D Wrapper
:param x: (tf.tensor) The input to the layer (N,H,W,C).
:param size: (tuple) This specifies the size of the filter as well as the stride.
:param name: (string) Scope name.
:return: The output is the same input but halfed in both width and height (N,H/2,W/2,C).
"""
size_x, size_y = size
stride_x, stride_y = stride
return tf.nn.avg_pool(x, ksize=[1, size_x, size_y, 1], strides=[1, stride_x, stride_y, 1], padding='VALID',
name=name)
############################################################################################################
# Utilities for layers
示例15: _build
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tensor [as 别名]
def _build(self, obs_input, name=None):
"""Build model.
Args:
obs_input (tf.Tensor): Entire time-series observation input.
name (str): Inner model name, also the variable scope of the
inner model, if exist. One example is
garage.tf.models.Sequential.
Returns:
tf.tensor: Mean.
tf.Tensor: Log of standard deviation.
garage.distributions.DiagonalGaussian: Distribution.
"""
del name
return_var = tf.compat.v1.get_variable(
'return_var', (), initializer=tf.constant_initializer(0.5))
mean = tf.fill((tf.shape(obs_input)[0], self.output_dim), return_var)
log_std = tf.fill((tf.shape(obs_input)[0], self.output_dim),
np.log(0.5))
dist = DiagonalGaussian(self.output_dim)
# action will be 0.5 + 0.5 * 0.5 = 0.75
return mean, log_std, dist