本文整理汇总了Python中tensorflow.tanh方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.tanh方法的具体用法?Python tensorflow.tanh怎么用?Python tensorflow.tanh使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.tanh方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _NonLinearity
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def _NonLinearity(self, code):
"""Returns the non-linearity function pointer for the given string code.
For forwards compatibility, allows the full names for stand-alone
non-linearities, as well as the single-letter names used in ops like C,F.
Args:
code: String code representing a non-linearity function.
Returns:
non-linearity function represented by the code.
"""
if code in ['s', 'Sig']:
return tf.sigmoid
elif code in ['t', 'Tanh']:
return tf.tanh
elif code in ['r', 'Relu']:
return tf.nn.relu
elif code in ['m', 'Smax']:
return tf.nn.softmax
return None
示例2: _Apply
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def _Apply(self, *args):
xtransform = self._TransformInputs(*args)
depth_axis = len(self._output_shape) - 1
if self.hidden is not None:
htransform = self._TransformHidden(self.hidden)
f, i, j, o = tf.split(
value=htransform + xtransform, num_or_size_splits=4, axis=depth_axis)
else:
f, i, j, o = tf.split(
value=xtransform, num_or_size_splits=4, axis=depth_axis)
if self.cell is not None:
self.cell = tf.sigmoid(f) * self.cell + tf.sigmoid(i) * tf.tanh(j)
else:
self.cell = tf.sigmoid(i) * tf.tanh(j)
self.hidden = tf.sigmoid(o) * tf.tanh(self.cell)
return self.hidden
示例3: get_cell
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def get_cell(self):
self.cell_input_dim = self.internal_dim
def mlp(cell_input, prev_internal_state):
w1 = tf.get_variable('w1', [self.cell_input_dim, self.internal_dim])
b1 = tf.get_variable('b1', [self.internal_dim])
w2 = tf.get_variable('w2', [self.internal_dim, self.internal_dim])
b2 = tf.get_variable('b2', [self.internal_dim])
w3 = tf.get_variable('w3', [self.internal_dim, self.internal_dim])
b3 = tf.get_variable('b3', [self.internal_dim])
proj = tf.get_variable(
'proj', [self.internal_dim, self.output_dim])
hidden = cell_input
hidden = tf.tanh(tf.nn.bias_add(tf.matmul(hidden, w1), b1))
hidden = tf.tanh(tf.nn.bias_add(tf.matmul(hidden, w2), b2))
output = tf.matmul(hidden, proj)
return output, hidden
return mlp
示例4: __call__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def __call__(self, observation, state):
with tf.variable_scope('policy'):
x = tf.contrib.layers.flatten(observation)
mean = tf.contrib.layers.fully_connected(
x,
self._action_size,
tf.tanh,
weights_initializer=self._mean_weights_initializer)
logstd = tf.get_variable('logstd', mean.shape[1:], tf.float32,
self._logstd_initializer)
logstd = tf.tile(logstd[None, ...],
[tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
with tf.variable_scope('value'):
x = tf.contrib.layers.flatten(observation)
for size in self._value_layers:
x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
value = tf.contrib.layers.fully_connected(x, 1, None)[:, 0]
return (mean, logstd, value), state
示例5: build_mlp
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def build_mlp(input_placeholder, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None):
"""
Builds a feedforward neural network
arguments:
input_placeholder: placeholder variable for the state (batch_size, input_size)
output_size: size of the output layer
scope: variable scope of the network
n_layers: number of hidden layers
size: dimension of the hidden layer
activation: activation of the hidden layers
output_activation: activation of the ouput layers
returns:
output placeholder of the network (the result of a forward pass)
Hint: use tf.layers.dense
"""
# YOUR HW2 CODE HERE
with tf.variable_scope(scope):
h = input_placeholder
for i in range(n_layers):
h = tf.layers.dense(h, size, activation=activation, name='h{}'.format(i + 1))
output_placeholder = tf.layers.dense(h, output_size, activation=output_activation, name='output')
return output_placeholder
示例6: build_mlp
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def build_mlp(input_placeholder, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None):
"""
Builds a feedforward neural network
arguments:
input_placeholder: placeholder variable for the state (batch_size, input_size)
output_size: size of the output layer
scope: variable scope of the network
n_layers: number of hidden layers
size: dimension of the hidden layer
activation: activation of the hidden layers
output_activation: activation of the ouput layers
returns:
output placeholder of the network (the result of a forward pass)
Hint: use tf.layers.dense
"""
# YOUR CODE HERE
with tf.variable_scope(scope):
h = input_placeholder
for i in range(n_layers):
h = tf.layers.dense(h, size, activation=activation, name='h{}'.format(i + 1))
output_placeholder = tf.layers.dense(h, output_size, activation=output_activation, name='output')
return output_placeholder
示例7: build_mlp
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def build_mlp(x, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None, regularizer=None):
"""
builds a feedforward neural network
arguments:
x: placeholder variable for the state (batch_size, input_size)
regularizer: regularization for weights
(see `build_policy()` for rest)
returns:
output placeholder of the network (the result of a forward pass)
"""
i = 0
for i in range(n_layers):
x = tf.layers.dense(inputs=x,units=size, activation=activation, name='fc{}'.format(i), kernel_regularizer=regularizer, bias_regularizer=regularizer)
x = tf.layers.dense(inputs=x, units=output_size, activation=output_activation, name='fc{}'.format(i + 1), kernel_regularizer=regularizer, bias_regularizer=regularizer)
return x
示例8: build_rnn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def build_rnn(x, h, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None, regularizer=None):
"""
builds a gated recurrent neural network
inputs are first embedded by an MLP then passed to a GRU cell
make MLP layers with `size` number of units
make the GRU with `output_size` number of units
use `activation` as the activation function for both MLP and GRU
arguments:
(see `build_policy()`)
hint: use `build_mlp()`
"""
#====================================================================================#
# ----------PROBLEM 2----------
#====================================================================================#
# YOUR CODE HERE
x = build_mlp(x, output_size, scope, n_layers, size, activation, activation, regularizer)
gru = tf.keras.layers.GRU(output_size, activation=activation, return_sequences=False, return_state=True)
x, h = gru(x, h)
return x, h
示例9: build_critic
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def build_critic(x, h, output_size, scope, n_layers, size, gru_size, recurrent=True, activation=tf.tanh, output_activation=None, regularizer=None):
"""
build recurrent critic
arguments:
regularizer: regularization for weights
(see `build_policy()` for rest)
n.b. the policy and critic should not share weights
"""
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
if recurrent:
x, h = build_rnn(x, h, gru_size, scope, n_layers, size, activation=activation, output_activation=output_activation, regularizer=regularizer)
else:
x = tf.reshape(x, (-1, x.get_shape()[1]*x.get_shape()[2]))
x = build_mlp(x, gru_size, scope, n_layers + 1, size, activation=activation, output_activation=activation, regularizer=regularizer)
x = tf.layers.dense(x, output_size, activation=output_activation, name='decoder', kernel_regularizer=regularizer, bias_regularizer=regularizer)
return x
示例10: build_mlp
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def build_mlp(input_placeholder, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None):
"""
Builds a feedforward neural network
arguments:
input_placeholder: placeholder variable for the state (batch_size, input_size)
output_size: size of the output layer
scope: variable scope of the network
n_layers: number of hidden layers
size: dimension of the hidden layer
activation: activation of the hidden layers
output_activation: activation of the ouput layers
returns:
output placeholder of the network (the result of a forward pass)
Hint: use tf.layers.dense
"""
output_placeholder = input_placeholder
with tf.variable_scope(scope):
for _ in range(n_layers):
output_placeholder = tf.layers.dense(output_placeholder, size, activation=activation)
output_placeholder = tf.layers.dense(output_placeholder, output_size, activation=output_activation)
return output_placeholder
示例11: call
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def call(self, inputs):
mean_and_log_std = self.model(inputs)
mean, log_std = tf.split(mean_and_log_std, num_or_size_splits=2, axis=1)
log_std = tf.clip_by_value(log_std, -20., 2.)
distribution = tfp.distributions.MultivariateNormalDiag(
loc=mean,
scale_diag=tf.exp(log_std)
)
raw_actions = distribution.sample()
if not self._reparameterize:
### Problem 1.3.A
### YOUR CODE HERE
raw_actions = tf.stop_gradient(raw_actions)
log_probs = distribution.log_prob(raw_actions)
log_probs -= self._squash_correction(raw_actions)
### Problem 2.A
### YOUR CODE HERE
self.actions = tf.tanh(raw_actions)
return self.actions, log_probs
示例12: stacked_lstm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def stacked_lstm(self, inputs, states, hidden_size, output_size, nlayers):
"""Stacked LSTM layers with FC layers as input and output embeddings.
Args:
inputs: input tensor
states: a list of internal lstm states for each layer
hidden_size: number of lstm units
output_size: size of the output
nlayers: number of lstm layers
Returns:
net: output of the network
skips: a list of updated lstm states for each layer
"""
net = inputs
net = slim.layers.fully_connected(
net, hidden_size, activation_fn=None, scope="af1")
for i in range(nlayers):
net, states[i] = self.basic_lstm(
net, states[i], hidden_size, scope="alstm%d"%i)
net = slim.layers.fully_connected(
net, output_size, activation_fn=tf.tanh, scope="af2")
return net, states
示例13: conv_lstm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def conv_lstm(x,
kernel_size,
filters,
padding="SAME",
dilation_rate=(1, 1),
name=None,
reuse=None):
"""Convolutional LSTM in 1 dimension."""
with tf.variable_scope(
name, default_name="conv_lstm", values=[x], reuse=reuse):
gates = conv(
x,
4 * filters,
kernel_size,
padding=padding,
dilation_rate=dilation_rate)
g = tf.split(layer_norm(gates, 4 * filters), 4, axis=3)
new_cell = tf.sigmoid(g[0]) * x + tf.sigmoid(g[1]) * tf.tanh(g[3])
return tf.sigmoid(g[2]) * tf.tanh(new_cell)
示例14: lstm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def lstm(xs, ms, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
nsteps = len(xs)
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
示例15: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tanh [as 别名]
def __init__(self, params, ob_space, ac_space, nbatch, nsteps): #pylint: disable=W0613
ob_shape = (nbatch,) + ob_space.shape
X = tf.placeholder(tf.float32, ob_shape, name='Ob') #obs
with tf.name_scope('policy_new'):
activ = tf.tanh
h1 = activ(tf.nn.xw_plus_b(X, params['policy/pi_fc1/w:0'], params['policy/pi_fc1/b:0']))
h2 = activ(tf.nn.xw_plus_b(h1, params['policy/pi_fc2/w:0'], params['policy/pi_fc2/b:0']))
pi = tf.nn.xw_plus_b(h2, params['policy/pi/w:0'], params['policy/pi/b:0'])
logstd = params['policy/logstd:0']
pdparam = tf.concat([pi, pi * 0.0 + logstd], axis=1)
self.pdtype = make_pdtype(ac_space)
self.pd = self.pdtype.pdfromflat(pdparam)
self.X = X