本文整理汇总了Python中tensorflow.tan方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.tan方法的具体用法?Python tensorflow.tan怎么用?Python tensorflow.tan使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.tan方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: add_cen_x_output
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def add_cen_x_output(self, output_key, pred_cen_z, pred_view_angs):
output_type = self.output_config[output_key]
print('\t{:30s}{}'.format(output_key, output_type))
with tf.variable_scope(output_key):
if output_type == 'from_view_ang_and_z':
# Predict centroid x using viewing angle
cam2_pred_cen_x = pred_cen_z * tf.tan(pred_view_angs)
# Adjust for x_offset
cam_p = self.cam_p
x_offset = -cam_p[0, 3] / cam_p[0, 0]
pred_cen_x = cam2_pred_cen_x + x_offset
else:
raise ValueError('Invalid output_type', output_type)
self._output_dict.add_unique_to_dict({
output_key: pred_cen_x,
})
示例2: test_forward_unary
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def test_forward_unary():
def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
"""test unary operators"""
np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
tf.reset_default_graph()
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
out = op(in_data)
compare_tf_with_tvm([np_data], ['in_data:0'], out.name)
_test_forward_unary(tf.acos, -1, 1)
_test_forward_unary(tf.asin, -1, 1)
_test_forward_unary(tf.atanh, -1, 1)
_test_forward_unary(tf.sinh)
_test_forward_unary(tf.cosh)
_test_forward_unary(tf.acosh)
_test_forward_unary(tf.asinh)
_test_forward_unary(tf.atan)
_test_forward_unary(tf.sin)
_test_forward_unary(tf.cos)
_test_forward_unary(tf.tan)
_test_forward_unary(tf.tanh)
_test_forward_unary(tf.erf)
_test_forward_unary(tf.log)
_test_forward_unary(tf.log1p)
示例3: test_Tan
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def test_Tan(self):
t = tf.tan(self.random(4, 3))
self.check(t)
示例4: perspective
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def perspective(aspect_ratio, fov_y, near_clip, far_clip):
"""Computes perspective transformation matrices.
Functionality mimes gluPerspective (third_party/GL/glu/include/GLU/glu.h).
Args:
aspect_ratio: float value specifying the image aspect ratio (width/height).
fov_y: 1-D float32 Tensor with shape [batch_size] specifying output vertical
field of views in degrees.
near_clip: 1-D float32 Tensor with shape [batch_size] specifying near
clipping plane distance.
far_clip: 1-D float32 Tensor with shape [batch_size] specifying far clipping
plane distance.
Returns:
A [batch_size, 4, 4] float tensor that maps from right-handed points in eye
space to left-handed points in clip space.
"""
# The multiplication of fov_y by pi/360.0 simultaneously converts to radians
# and adds the half-angle factor of .5.
focal_lengths_y = 1.0 / tf.tan(fov_y * (math.pi / 360.0))
depth_range = far_clip - near_clip
p_22 = -(far_clip + near_clip) / depth_range
p_23 = -2.0 * (far_clip * near_clip / depth_range)
zeros = tf.zeros_like(p_23, dtype=tf.float32)
# pyformat: disable
perspective_transform = tf.concat(
[
focal_lengths_y / aspect_ratio, zeros, zeros, zeros,
zeros, focal_lengths_y, zeros, zeros,
zeros, zeros, p_22, p_23,
zeros, zeros, -tf.ones_like(p_23, dtype=tf.float32), zeros
], axis=0)
# pyformat: enable
perspective_transform = tf.reshape(perspective_transform, [4, 4, -1])
return tf.transpose(perspective_transform, [2, 0, 1])
示例5: testFloatBasic
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def testFloatBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32)
y = (x + .5).astype(np.float32) # no zero
z = (x + 15.5).astype(np.float32) # all positive
k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例6: testFloatEmpty
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def testFloatEmpty(self):
x = np.empty((2, 0, 5), dtype=np.float32)
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(x, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(x, np.sqrt, tf.sqrt)
self._compareBoth(x, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(x, np.log, tf.log)
self._compareBoth(x, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(x, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
# Can't use vectorize below, so just use some arbitrary function
self._compareBoth(x, np.sign, tf.lgamma)
self._compareBoth(x, np.sign, tf.erf)
self._compareBoth(x, np.sign, tf.erfc)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(x, np.arcsin, tf.asin)
self._compareBoth(x, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(x, np.sign, tf.sign)
self._compareBothSparse(x, np.sign, tf.erf)
示例7: testDoubleBasic
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def testDoubleBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64)
y = (x + .5).astype(np.float64) # no zero
z = (x + 15.5).astype(np.float64) # all positive
k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(k, np.tan, tf.tan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例8: test_forward_atan2
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import tan [as 别名]
def test_forward_atan2():
"""test operator tan """
tf.disable_eager_execution()
np_data_1 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
np_data_2 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
tf.reset_default_graph()
in_data_1 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_1")
in_data_2 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_2")
tf.atan2(in_data_1, in_data_2, name="atan2")
compare_tf_with_tvm([np_data_1, np_data_2], ['in_data_1:0', 'in_data_2:0'], 'atan2:0')