当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.subtract方法代码示例

本文整理汇总了Python中tensorflow.subtract方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.subtract方法的具体用法?Python tensorflow.subtract怎么用?Python tensorflow.subtract使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.subtract方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: preprocess_image

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def preprocess_image(image, output_height, output_width, is_training):
  """Preprocesses the given image.

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    is_training: `True` if we're preprocessing the image for training and
      `False` otherwise.

  Returns:
    A preprocessed image.
  """
  image = tf.to_float(image)
  image = tf.image.resize_image_with_crop_or_pad(
      image, output_width, output_height)
  image = tf.subtract(image, 128.0)
  image = tf.div(image, 128.0)
  return image 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:lenet_preprocessing.py

示例2: flip_boxes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def flip_boxes(boxes):
  """Left-right flip the boxes.

  Args:
    boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
           Boxes are in normalized form meaning their coordinates vary
           between [0, 1].
           Each row is in the form of [ymin, xmin, ymax, xmax].

  Returns:
    Flipped boxes.
  """
  # Flip boxes.
  ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
  flipped_xmin = tf.subtract(1.0, xmax)
  flipped_xmax = tf.subtract(1.0, xmin)
  flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], 1)
  return flipped_boxes 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:preprocessor.py

示例3: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
                 scale = 0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)),
                self.weights['w1']),
                self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])

        # cost
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
        self.optimizer = optimizer.minimize(self.cost)

        init = tf.global_variables_initializer()
        self.sess = tf.Session()
        self.sess.run(init) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:26,代码来源:DenoisingAutoencoder.py

示例4: _build_qnet

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def _build_qnet(self):
    """
    Build q-network
    """
    with tf.variable_scope(self.scope):
      self.state_input = tf.placeholder(tf.float32, [None, self.state_size])
      self.action = tf.placeholder(tf.int32, [None])
      self.target_q = tf.placeholder(tf.float32, [None])

      fc1 = tf_utils.fc(self.state_input, n_output=self.n_hidden_1, activation_fn=tf.nn.relu)
      fc2 = tf_utils.fc(fc1, n_output=self.n_hidden_2, activation_fn=tf.nn.relu)
      self.q_values = tf_utils.fc(fc2, self.action_size, activation_fn=None)

      action_mask = tf.one_hot(self.action, self.action_size, 1.0, 0.0)
      q_value_pred = tf.reduce_sum(self.q_values * action_mask, 1)

      self.loss = tf.reduce_mean(tf.square(tf.subtract(self.target_q, q_value_pred)))
      self.optimizer = tf.train.AdamOptimizer(self.lr)
      self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step()) 
开发者ID:yrlu,项目名称:reinforcement_learning,代码行数:21,代码来源:dqn.py

示例5: get_value_updater

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def get_value_updater(self, data, new_mean, gamma_weighted, gamma_sum):
        tf_new_differences = tf.subtract(data, tf.expand_dims(new_mean, 0))
        tf_sq_dist_matrix = tf.matmul(tf.expand_dims(tf_new_differences, 2), tf.expand_dims(tf_new_differences, 1))
        tf_new_covariance = tf.reduce_sum(tf_sq_dist_matrix * tf.expand_dims(tf.expand_dims(gamma_weighted, 1), 2), 0)

        if self.has_prior:
            tf_new_covariance = self.get_prior_adjustment(tf_new_covariance, gamma_sum)

        tf_s, tf_u, _ = tf.svd(tf_new_covariance)

        tf_required_eigvals = tf_s[:self.rank]
        tf_required_eigvecs = tf_u[:, :self.rank]

        tf_new_baseline = (tf.trace(tf_new_covariance) - tf.reduce_sum(tf_required_eigvals)) / self.tf_rest
        tf_new_eigvals = tf_required_eigvals - tf_new_baseline
        tf_new_eigvecs = tf.transpose(tf_required_eigvecs)

        return tf.group(
            self.tf_baseline.assign(tf_new_baseline),
            self.tf_eigvals.assign(tf_new_eigvals),
            self.tf_eigvecs.assign(tf_new_eigvecs)
        ) 
开发者ID:aakhundov,项目名称:tf-example-models,代码行数:24,代码来源:sparse_covariance.py

示例6: _flip_boxes_left_right

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def _flip_boxes_left_right(boxes):
  """Left-right flip the boxes.

  Args:
    boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
           Boxes are in normalized form meaning their coordinates vary
           between [0, 1].
           Each row is in the form of [ymin, xmin, ymax, xmax].

  Returns:
    Flipped boxes.
  """
  ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
  flipped_xmin = tf.subtract(1.0, xmax)
  flipped_xmax = tf.subtract(1.0, xmin)
  flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], 1)
  return flipped_boxes 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:19,代码来源:preprocessor.py

示例7: _flip_boxes_up_down

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def _flip_boxes_up_down(boxes):
  """Up-down flip the boxes.

  Args:
    boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
           Boxes are in normalized form meaning their coordinates vary
           between [0, 1].
           Each row is in the form of [ymin, xmin, ymax, xmax].

  Returns:
    Flipped boxes.
  """
  ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
  flipped_ymin = tf.subtract(1.0, ymax)
  flipped_ymax = tf.subtract(1.0, ymin)
  flipped_boxes = tf.concat([flipped_ymin, xmin, flipped_ymax, xmax], 1)
  return flipped_boxes 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:19,代码来源:preprocessor.py

示例8: _rot90_boxes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def _rot90_boxes(boxes):
  """Rotate boxes counter-clockwise by 90 degrees.

  Args:
    boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
           Boxes are in normalized form meaning their coordinates vary
           between [0, 1].
           Each row is in the form of [ymin, xmin, ymax, xmax].

  Returns:
    Rotated boxes.
  """
  ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
  rotated_ymin = tf.subtract(1.0, xmax)
  rotated_ymax = tf.subtract(1.0, xmin)
  rotated_xmin = ymin
  rotated_xmax = ymax
  rotated_boxes = tf.concat(
      [rotated_ymin, rotated_xmin, rotated_ymax, rotated_xmax], 1)
  return rotated_boxes 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:22,代码来源:preprocessor.py

示例9: normalize

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def normalize(gt_image, gt_binary_image, gt_instance_image):
    """
    Normalize the image data by substracting the imagenet mean value
    :param gt_image:
    :param gt_binary_image:
    :param gt_instance_image:
    :return:
    """

    if gt_image.get_shape().as_list()[-1] != 3 \
            or gt_binary_image.get_shape().as_list()[-1] != 1 \
            or gt_instance_image.get_shape().as_list()[-1] != 1:
        log.error(gt_image.get_shape())
        log.error(gt_binary_image.get_shape())
        log.error(gt_instance_image.get_shape())
        raise ValueError('Input must be of size [height, width, C>0]')

    gt_image = tf.cast(gt_image, dtype=tf.float32)
    gt_image = tf.subtract(tf.divide(gt_image, tf.constant(127.5, dtype=tf.float32)),
                           tf.constant(1.0, dtype=tf.float32))

    return gt_image, gt_binary_image, gt_instance_image 
开发者ID:MaybeShewill-CV,项目名称:lanenet-lane-detection,代码行数:24,代码来源:tf_io_pipline_tools.py

示例10: _extract_features_batch

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def _extract_features_batch(self, serialized_batch):
        features = tf.parse_example(
            serialized_batch,
            features={'images': tf.FixedLenFeature([], tf.string),
                'imagepaths': tf.FixedLenFeature([], tf.string),
                'labels': tf.VarLenFeature(tf.int64),
                 })

        bs = features['images'].shape[0]
        images = tf.decode_raw(features['images'], tf.uint8)
        w, h = tuple(CFG.ARCH.INPUT_SIZE)
        images = tf.cast(x=images, dtype=tf.float32)
        #images = tf.subtract(tf.divide(images, 128.0), 1.0)
        images = tf.reshape(images, [bs, h, -1, CFG.ARCH.INPUT_CHANNELS])

        labels = features['labels']
        labels = tf.cast(labels, tf.int32)

        imagepaths = features['imagepaths']

        return images, labels, imagepaths 
开发者ID:Mingtzge,项目名称:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代码行数:23,代码来源:read_tfrecord.py

示例11: log_coral_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def log_coral_loss(self, h_src, h_trg, gamma=1e-3):
	# regularized covariances result in inf or nan
	# First: subtract the mean from the data matrix
	batch_size = tf.to_float(tf.shape(h_src)[0])
	h_src = h_src - tf.reduce_mean(h_src, axis=0) 
	h_trg = h_trg - tf.reduce_mean(h_trg, axis=0 )
	cov_source = (1./(batch_size-1)) * tf.matmul( h_src, h_src, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
	cov_target = (1./(batch_size-1)) * tf.matmul( h_trg, h_trg, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
	#eigen decomposition
	eig_source  = tf.self_adjoint_eig(cov_source)
	eig_target  = tf.self_adjoint_eig(cov_target)
	log_cov_source = tf.matmul( eig_source[1] ,  tf.matmul(tf.diag( tf.log(eig_source[0]) ), eig_source[1], transpose_b=True) )
	log_cov_target = tf.matmul( eig_target[1] ,  tf.matmul(tf.diag( tf.log(eig_target[0]) ), eig_target[1], transpose_b=True) )

	# Returns the Frobenius norm
	return tf.reduce_mean(tf.square( tf.subtract(log_cov_source,log_cov_target))) 
	#~ return tf.reduce_mean(tf.reduce_max(eig_target[0]))
	#~ return tf.to_float(tf.equal(tf.count_nonzero(h_src), tf.count_nonzero(h_src))) 
开发者ID:pmorerio,项目名称:minimal-entropy-correlation-alignment,代码行数:20,代码来源:model.py

示例12: bi_linear_sample

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def bi_linear_sample(self, img_feat, n, x, y):
        x1 = tf.floor(x)
        x2 = tf.ceil(x)
        y1 = tf.floor(y)
        y2 = tf.ceil(y)
        Q11 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x1, tf.int32), tf.cast(y1, tf.int32)], 1))
        Q12 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x1, tf.int32), tf.cast(y2, tf.int32)], 1))
        Q21 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x2, tf.int32), tf.cast(y1, tf.int32)], 1))
        Q22 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x2, tf.int32), tf.cast(y2, tf.int32)], 1))

        weights = tf.multiply(tf.subtract(x2, x), tf.subtract(y2, y))
        Q11 = tf.multiply(tf.expand_dims(weights, 1), Q11)
        weights = tf.multiply(tf.subtract(x, x1), tf.subtract(y2, y))
        Q21 = tf.multiply(tf.expand_dims(weights, 1), Q21)
        weights = tf.multiply(tf.subtract(x2, x), tf.subtract(y, y1))
        Q12 = tf.multiply(tf.expand_dims(weights, 1), Q12)
        weights = tf.multiply(tf.subtract(x, x1), tf.subtract(y, y1))
        Q22 = tf.multiply(tf.expand_dims(weights, 1), Q22)
        outputs = tf.add_n([Q11, Q21, Q12, Q22])
        return outputs 
开发者ID:walsvid,项目名称:Pixel2MeshPlusPlus,代码行数:22,代码来源:layers.py

示例13: orthogonal_regularizer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def orthogonal_regularizer(scale) :
    """ Defining the Orthogonal regularizer and return the function at last to be used in Conv layer as kernel regularizer"""

    def ortho_reg(w) :
        """ Reshaping the matrxi in to 2D tensor for enforcing orthogonality"""
        _, _, _, c = w.get_shape().as_list()

        w = tf.reshape(w, [-1, c])

        """ Declaring a Identity Tensor of appropriate size"""
        identity = tf.eye(c)

        """ Regularizer Wt*W - I """
        w_transpose = tf.transpose(w)
        w_mul = tf.matmul(w_transpose, w)
        reg = tf.subtract(w_mul, identity)

        """Calculating the Loss Obtained"""
        ortho_loss = tf.nn.l2_loss(reg)

        return scale * ortho_loss

    return ortho_reg 
开发者ID:taki0112,项目名称:Tensorflow-Cookbook,代码行数:25,代码来源:utils.py

示例14: orthogonal_regularizer_fully

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def orthogonal_regularizer_fully(scale) :
    """ Defining the Orthogonal regularizer and return the function at last to be used in Fully Connected Layer """

    def ortho_reg_fully(w) :
        """ Reshaping the matrix in to 2D tensor for enforcing orthogonality"""
        _, c = w.get_shape().as_list()

        """Declaring a Identity Tensor of appropriate size"""
        identity = tf.eye(c)
        w_transpose = tf.transpose(w)
        w_mul = tf.matmul(w_transpose, w)
        reg = tf.subtract(w_mul, identity)

        """ Calculating the Loss """
        ortho_loss = tf.nn.l2_loss(reg)

        return scale * ortho_loss

    return ortho_reg_fully 
开发者ID:taki0112,项目名称:Tensorflow-Cookbook,代码行数:21,代码来源:utils.py

示例15: triplet_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import subtract [as 别名]
def triplet_loss(anchor, positive, negative, alpha):
    """Calculate the triplet loss according to the FaceNet paper
    
    Args:
      anchor: the embeddings for the anchor images.
      positive: the embeddings for the positive images.
      negative: the embeddings for the negative images.
  
    Returns:
      the triplet loss according to the FaceNet paper as a float tensor.
    """
    with tf.variable_scope('triplet_loss'):
        pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1)
        neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1)
        
        basic_loss = tf.add(tf.subtract(pos_dist,neg_dist), alpha)
        loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0)
      
    return loss 
开发者ID:GaoangW,项目名称:TNT,代码行数:21,代码来源:facenet.py


注:本文中的tensorflow.subtract方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。