当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.sqrt方法代码示例

本文整理汇总了Python中tensorflow.sqrt方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.sqrt方法的具体用法?Python tensorflow.sqrt怎么用?Python tensorflow.sqrt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.sqrt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: minibatch_stddev_layer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def minibatch_stddev_layer(x, group_size=4):
    with tf.variable_scope('MinibatchStddev'):
        group_size = tf.minimum(group_size, tf.shape(x)[0])     # Minibatch must be divisible by (or smaller than) group_size.
        s = x.shape                                             # [NCHW]  Input shape.
        y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]])   # [GMCHW] Split minibatch into M groups of size G.
        y = tf.cast(y, tf.float32)                              # [GMCHW] Cast to FP32.
        y -= tf.reduce_mean(y, axis=0, keep_dims=True)           # [GMCHW] Subtract mean over group.
        y = tf.reduce_mean(tf.square(y), axis=0)                # [MCHW]  Calc variance over group.
        y = tf.sqrt(y + 1e-8)                                   # [MCHW]  Calc stddev over group.
        y = tf.reduce_mean(y, axis=[1,2,3], keep_dims=True)      # [M111]  Take average over fmaps and pixels.
        y = tf.cast(y, x.dtype)                                 # [M111]  Cast back to original data type.
        y = tf.tile(y, [group_size, 1, s[2], s[3]])             # [N1HW]  Replicate over group and pixels.
        return tf.concat([x, y], axis=1)                        # [NCHW]  Append as new fmap.

#----------------------------------------------------------------------------
# Generator network used in the paper. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:18,代码来源:networks.py

示例2: set_input_shape

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def set_input_shape(self, input_shape):
        batch_size, rows, cols, input_channels = input_shape
        kernel_shape = tuple(self.kernel_shape) + (input_channels,
                                                   self.output_channels)
        assert len(kernel_shape) == 4
        assert all(isinstance(e, int) for e in kernel_shape), kernel_shape
        init = tf.random_normal(kernel_shape, dtype=tf.float32)
        init = init / tf.sqrt(1e-7 + tf.reduce_sum(tf.square(init),
                                                   axis=(0, 1, 2)))
        self.kernels = tf.Variable(init)
        self.b = tf.Variable(
            np.zeros((self.output_channels,)).astype('float32'))
        input_shape = list(input_shape)
        input_shape[0] = 1
        dummy_batch = tf.zeros(input_shape)
        dummy_output = self.fprop(dummy_batch)
        output_shape = [int(e) for e in dummy_output.get_shape()]
        output_shape[0] = batch_size
        self.output_shape = tuple(output_shape) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:21,代码来源:model.py

示例3: set_input_shape

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def set_input_shape(self, input_shape):
        batch_size, dim = input_shape
        self.input_shape = [batch_size, dim]
        self.output_shape = [batch_size, self.num_hid]
        if self.init_mode == "norm":
            init = tf.random_normal([dim, self.num_hid], dtype=tf.float32)
            init = init / tf.sqrt(1e-7 + tf.reduce_sum(tf.square(init), axis=0,
                                                       keep_dims=True))
            init = init * self.init_scale
        elif self.init_mode == "uniform_unit_scaling":
            scale = np.sqrt(3. / dim)
            init = tf.random_uniform([dim, self.num_hid], dtype=tf.float32,
                                     minval=-scale, maxval=scale)
        else:
            raise ValueError(self.init_mode)
        self.W = PV(init)
        if self.use_bias:
            self.b = PV((np.zeros((self.num_hid,))
                         + self.init_b).astype('float32')) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:21,代码来源:picklable_model.py

示例4: _std

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def _std(self):
    """Computes the current estimate of the standard deviation.

    Note that the standard deviation is not defined until at least two samples
    were seen.

    Returns:
      Tensor of current variance.
    """
    variance = tf.cond(
        self._count > 1,
        lambda: self._var_sum / tf.cast(self._count - 1, tf.float32),
        lambda: tf.ones_like(self._var_sum) * float('nan'))
    # The epsilon corrects for small negative variance values caused by
    # the algorithm. It was empirically chosen to work with all environments
    # tested.
    return tf.sqrt(variance + 1e-4) 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:19,代码来源:normalize.py

示例5: _dist_to_opt

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def _dist_to_opt(self):
    """Distance to optimum.

    Returns:
      D_t ops
    """
    dist_to_opt_ops = []
    # Running average of the norm of gradient
    self._grad_norm = tf.sqrt(self._grad_norm_squared)
    avg_op = self._moving_averager.apply([self._grad_norm,])
    dist_to_opt_ops.append(avg_op)
    with tf.control_dependencies([avg_op]):
      self._grad_norm_avg = self._moving_averager.average(self._grad_norm)
      # Single iteration distance estimation, note here
      # self._grad_norm_avg is per variable
      self._d_t = self._grad_norm_avg / self._grad_norm_squared_avg
    # Running average of distance
    avg_op = self._moving_averager.apply([self._d_t])
    dist_to_opt_ops.append(avg_op)
    with tf.control_dependencies([avg_op]):
      self._dist_to_opt_avg = tf.identity(
          self._moving_averager.average(self._d_t))
      if self._sparsity_debias:
        self._dist_to_opt_avg /= tf.sqrt(self._sparsity_avg)
    return dist_to_opt_ops  # D_t 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:27,代码来源:yellowfin.py

示例6: xception_exit

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def xception_exit(inputs):
  """Xception exit flow."""
  with tf.variable_scope("xception_exit"):
    x = inputs
    x_shape = x.get_shape().as_list()
    if x_shape[1] is None or x_shape[2] is None:
      length_float = tf.to_float(tf.shape(x)[1])
      length_float *= tf.to_float(tf.shape(x)[2])
      spatial_dim_float = tf.sqrt(length_float)
      spatial_dim = tf.to_int32(spatial_dim_float)
      x_depth = x_shape[3]
      x = tf.reshape(x, [-1, spatial_dim, spatial_dim, x_depth])
    elif x_shape[1] != x_shape[2]:
      spatial_dim = int(math.sqrt(float(x_shape[1] * x_shape[2])))
      if spatial_dim * spatial_dim != x_shape[1] * x_shape[2]:
        raise ValueError("Assumed inputs were square-able but they were "
                         "not. Shape: %s" % x_shape)
      x = tf.reshape(x, [-1, spatial_dim, spatial_dim, x_depth])

    x = common_layers.conv_block_downsample(x, (3, 3), (2, 2), "SAME")
    return tf.nn.relu(x) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:23,代码来源:xception.py

示例7: embedding_matrix

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def embedding_matrix(vocab_size: int, dim: int,
                     name: str=None):
    with tf.name_scope(None, 'embedding-matrix'):
        # compute initialization paramters
        shape = (vocab_size - 1, dim)
        scale = tf.sqrt(1 / shape[0])

        # get or initialize embedding matrix
        w = tf.get_variable(
            name, shape,
            dtype=tf.float32,
            initializer=tf.random_uniform_initializer(
                minval=-scale, maxval=scale
            ),
            trainable=True
        )

        # 1st row should be zero and not be updated by backprop because of
        # zero padding.
        emb = tf.concat([
            tf.zeros((1, dim), dtype=tf.float32),
            w
        ], 0)

        return emb 
开发者ID:distillpub,项目名称:post--memorization-in-rnns,代码行数:27,代码来源:embedding_matrix.py

示例8: conv2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def conv2d(self, input_, n_filters, k_size, padding='same'):
        if not self.cfg.weight_scale:
            return tf.layers.conv2d(input_, n_filters, k_size, padding=padding)

        n_feats_in = input_.get_shape().as_list()[-1]
        fan_in = k_size * k_size * n_feats_in
        c = tf.constant(np.sqrt(2. / fan_in), dtype=tf.float32)
        kernel_init = tf.random_normal_initializer(stddev=1.)
        w_shape = [k_size, k_size, n_feats_in, n_filters]
        w = tf.get_variable('kernel', shape=w_shape, initializer=kernel_init)
        w = c * w
        strides = [1, 1, 1, 1]
        net = tf.nn.conv2d(input_, w, strides, padding=padding.upper())
        b = tf.get_variable('bias', [n_filters],
                            initializer=tf.constant_initializer(0.))
        net = tf.nn.bias_add(net, b)
        return net 
开发者ID:preritj,项目名称:progressive_growing_of_GANs,代码行数:19,代码来源:net.py

示例9: get_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def get_loss(predicted_transformation, batch_size, template_pointclouds_pl, source_pointclouds_pl):
	with tf.variable_scope('loss') as LossEvaluation:
		predicted_position = tf.slice(predicted_transformation,[0,0],[batch_size,3])
		predicted_quat = tf.slice(predicted_transformation,[0,3],[batch_size,4])

		# with tf.variable_scope('quat_normalization') as norm:
		norm_predicted_quat = tf.reduce_sum(tf.square(predicted_quat),1)
		norm_predicted_quat = tf.sqrt(norm_predicted_quat)
		norm_predicted_quat = tf.reshape(norm_predicted_quat,(batch_size,1))
		const = tf.constant(0.0000001,shape=(batch_size,1),dtype=tf.float32)
		norm_predicted_quat = tf.add(norm_predicted_quat,const)
		predicted_norm_quat = tf.divide(predicted_quat,norm_predicted_quat)

		transformed_predicted_point_cloud = helper.transformation_quat_tensor(source_pointclouds_pl, predicted_norm_quat,predicted_position)

		#loss = tf_util_loss.earth_mover(template_pointclouds_pl, transformed_predicted_point_cloud)
		loss = tf_util_loss.chamfer(template_pointclouds_pl, transformed_predicted_point_cloud)
	return loss 
开发者ID:vinits5,项目名称:pointnet-registration-framework,代码行数:20,代码来源:ipcr_model.py

示例10: get_loss_b

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def get_loss_b(self,predicted_transformation,batch_size,template_pointclouds_pl,source_pointclouds_pl):	
		with tf.variable_scope('loss') as LossEvaluation:
			predicted_position = tf.slice(predicted_transformation,[0,0],[batch_size,3])
			predicted_quat = tf.slice(predicted_transformation,[0,3],[batch_size,4])

			# with tf.variable_scope('quat_normalization') as norm:
			norm_predicted_quat = tf.reduce_sum(tf.square(predicted_quat),1)
			norm_predicted_quat = tf.sqrt(norm_predicted_quat)
			norm_predicted_quat = tf.reshape(norm_predicted_quat,(batch_size,1))
			const = tf.constant(0.0000001,shape=(batch_size,1),dtype=tf.float32)
			norm_predicted_quat = tf.add(norm_predicted_quat,const)
			predicted_norm_quat = tf.divide(predicted_quat,norm_predicted_quat)
	
			transformed_predicted_point_cloud = helper.transformation_quat_tensor(source_pointclouds_pl, predicted_norm_quat, predicted_position)

			# Use 1024 Points to find loss.
			#loss = tf_util_loss.earth_mover(template_pointclouds_pl, transformed_predicted_point_cloud)
			loss = tf_util_loss.chamfer(template_pointclouds_pl, transformed_predicted_point_cloud)
			# loss = 0
		return loss 
开发者ID:vinits5,项目名称:pointnet-registration-framework,代码行数:22,代码来源:pcr_model.py

示例11: gelu

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def gelu(input_tensor):
    """Gaussian Error Linear Unit.

    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415

    Args:
      input_tensor: float Tensor to perform activation.

    Returns:
      `input_tensor` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
    return input_tensor * cdf 
开发者ID:Socialbird-AILab,项目名称:BERT-Classification-Tutorial,代码行数:16,代码来源:modeling.py

示例12: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.constant(0.0, shape=[vocab_size, embedding_size]),
                trainable=trainableEmbeddings,name="W")
            self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
        print self.embedded_words1
        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
开发者ID:dhwajraj,项目名称:deep-siamese-text-similarity,代码行数:36,代码来源:siamese_network_semantic.py

示例13: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                trainable=True,name="W")
            self.embedded_chars1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            #self.embedded_chars_expanded1 = tf.expand_dims(self.embedded_chars1, -1)
            self.embedded_chars2 = tf.nn.embedding_lookup(self.W, self.input_x2)
            #self.embedded_chars_expanded2 = tf.expand_dims(self.embedded_chars2, -1)

        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.BiRNN(self.embedded_chars1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.BiRNN(self.embedded_chars2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
开发者ID:dhwajraj,项目名称:deep-siamese-text-similarity,代码行数:38,代码来源:siamese_network.py

示例14: get_weight

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def get_weight(shape, gain=np.sqrt(2), use_wscale=False, fan_in=None):
    if fan_in is None: fan_in = np.prod(shape[:-1])
    std = gain / np.sqrt(fan_in) # He init
    if use_wscale:
        wscale = tf.constant(np.float32(std), name='wscale')
        return tf.get_variable('weight', shape=shape, initializer=tf.initializers.random_normal()) * wscale
    else:
        return tf.get_variable('weight', shape=shape, initializer=tf.initializers.random_normal(0, std))

#----------------------------------------------------------------------------
# Fully-connected layer. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:13,代码来源:networks.py

示例15: dense

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sqrt [as 别名]
def dense(x, fmaps, gain=np.sqrt(2), use_wscale=False):
    if len(x.shape) > 2:
        x = tf.reshape(x, [-1, np.prod([d.value for d in x.shape[1:]])])
    w = get_weight([x.shape[1].value, fmaps], gain=gain, use_wscale=use_wscale)
    w = tf.cast(w, x.dtype)
    return tf.matmul(x, w)

#----------------------------------------------------------------------------
# Convolutional layer. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:11,代码来源:networks.py


注:本文中的tensorflow.sqrt方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。