本文整理汇总了Python中tensorflow.sparse_softmax方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.sparse_softmax方法的具体用法?Python tensorflow.sparse_softmax怎么用?Python tensorflow.sparse_softmax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.sparse_softmax方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testEquivalentToDensified
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def testEquivalentToDensified(self):
np.random.seed(1618)
n, m = np.random.choice(20, size=2)
for dtype in [np.float32, np.float64]:
sp_vals_np = np.random.rand(n, m).astype(dtype)
batched_sp_t, unused_nnz1 = _sparsify(
sp_vals_np.reshape((1, n, m)), thresh=0.) # No masking.
with self.test_session(use_gpu=False):
densified = tf.constant(sp_vals_np)
sp_result = sparse_ops.sparse_softmax(
batched_sp_t).eval().values.reshape((n, m))
dense_result = tf.nn.softmax(densified)
self.assertAllClose(dense_result.eval(), sp_result)
示例2: node_attention
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def node_attention(inputs, adj, return_weights=False):
hidden_size = inputs.shape[-1].value
H_v = tf.Variable(tf.random_normal([hidden_size, 1], stddev=0.1))
# convert adj to sparse tensor
zero = tf.constant(0, dtype=tf.float32)
where = tf.not_equal(adj, zero)
indices = tf.where(where)
values = tf.gather_nd(adj, indices)
adj = tf.SparseTensor(indices=indices,
values=values,
dense_shape=adj.shape)
with tf.name_scope('v'):
v = adj * tf.squeeze(tf.tensordot(inputs, H_v, axes=1))
weights = tf.sparse_softmax(v, name='alphas') # [nodes,nodes]
output = tf.sparse_tensor_dense_matmul(weights, inputs)
if not return_weights:
return output
else:
return output, weights
# view-level attention (equation (4) in SemiGNN)
示例3: compute_inference
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def compute_inference(self, node_features_in, sp_adj_matrix, is_training):
"""Forward pass for GAT model."""
adj_matrix_pred = self.edge_model.compute_inference(
node_features_in, sp_adj_matrix, is_training)
sp_adj_mask = tf.SparseTensor(
indices=sp_adj_matrix.indices,
values=tf.ones_like(sp_adj_matrix.values),
dense_shape=sp_adj_matrix.dense_shape)
sp_adj_att = sp_adj_mask * adj_matrix_pred
sp_adj_att = tf.SparseTensor(
indices=sp_adj_att.indices,
values=tf.nn.leaky_relu(sp_adj_att.values),
dense_shape=sp_adj_att.dense_shape)
sp_adj_att = tf.sparse_softmax(sp_adj_att)
logits = self.node_model.compute_inference(node_features_in, sp_adj_att,
is_training)
return logits, adj_matrix_pred
示例4: testHigherRanks
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def testHigherRanks(self):
# For the first shape:
# First batch:
# [? e.]
# [1. ? ]
# Second batch:
# [e ? ]
# [e e ]
#
# The softmax results should be:
# [? 1.] [1 ?]
# [1. ? ] and [.5 .5]
# where ? means implicitly zero.
#
# The second shape: same input data, but with a higher-rank shape.
shapes = [[2, 2, 2], [2, 1, 2, 2]]
for shape in shapes:
values = np.asarray(
[0., np.e, 1., 0., np.e, 0., np.e, np.e]).reshape(shape)
sp_t, unused_nnz = _sparsify(values, thresh=1e-2)
expected_values = [1., 1., 1., .5, .5]
with self.test_session(use_gpu=False):
result = sparse_ops.sparse_softmax(sp_t).eval()
self.assertAllEqual(expected_values, result.values)
self.assertAllEqual(sp_t.indices.eval(), result.indices)
self.assertAllEqual(shape, result.shape)
示例5: testGradient
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def testGradient(self):
x_shape = [2, 5, 10]
with self.test_session(use_gpu=False):
for dtype in [np.float32, np.float64]:
x_np = np.random.randn(*x_shape).astype(dtype)
x_tf, nnz = _sparsify(x_np)
y_tf = tf.sparse_softmax(x_tf)
err = tf.test.compute_gradient_error(x_tf.values, (nnz,), y_tf.values,
(nnz,))
self.assertLess(err, 1e-4)
示例6: build_sparse_matrix_softmax
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def build_sparse_matrix_softmax(self, idx_non_zero_values, X, dense_shape_A):
A = tf.SparseTensorValue(idx_non_zero_values, tf.squeeze(X), dense_shape_A)
A = tf.sparse_reorder(A) # n_edges x n_edges
A = tf.sparse_softmax(A)
return A
示例7: forward_incidence_matrix
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def forward_incidence_matrix(self, normalization):
if normalization[0] == "none":
mtr_values = tf.to_float(tf.ones_like(self.receiver_indices))
message_indices = tf.range(self.edge_count)
mtr_indices = tf.to_int64(tf.transpose(tf.stack([self.receiver_indices, message_indices])))
mtr_shape = tf.to_int64(tf.stack([self.vertex_count, self.edge_count]))
tensor = tf.SparseTensor(indices=mtr_indices,
values=mtr_values,
dense_shape=mtr_shape)
return tensor
elif normalization[0] == "global":
mtr_values = tf.to_float(tf.ones_like(self.receiver_indices))
message_indices = tf.range(self.edge_count)
mtr_indices = tf.to_int64(tf.transpose(tf.stack([self.receiver_indices, message_indices])))
mtr_shape = tf.to_int64(tf.stack([self.vertex_count, self.edge_count]))
tensor = tf.sparse_softmax(tf.SparseTensor(indices=mtr_indices,
values=mtr_values,
dense_shape=mtr_shape))
return tensor
elif normalization[0] == "local":
mtr_values = tf.to_float(tf.ones_like(self.receiver_indices))
message_indices = tf.range(self.edge_count)
mtr_indices = tf.to_int64(tf.transpose(tf.stack([self.message_types, self.receiver_indices, message_indices])))
mtr_shape = tf.to_int64(tf.stack([self.label_count*2, self.vertex_count, self.edge_count]))
tensor = tf.sparse_softmax(tf.SparseTensor(indices=mtr_indices,
values=mtr_values,
dense_shape=mtr_shape))
tensor = tf.sparse_reduce_sum_sparse(tensor, 0)
return tensor
示例8: backward_incidence_matrix
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def backward_incidence_matrix(self, normalization):
if normalization[0] == "none":
mtr_values = tf.to_float(tf.ones_like(self.sender_indices))
message_indices = tf.range(self.edge_count)
mtr_indices = tf.to_int64(tf.transpose(tf.stack([self.sender_indices, message_indices])))
mtr_shape = tf.to_int64(tf.stack([self.vertex_count, self.edge_count]))
tensor = tf.SparseTensor(indices=mtr_indices,
values=mtr_values,
dense_shape=mtr_shape)
return tensor
elif normalization[0] == "global":
mtr_values = tf.to_float(tf.ones_like(self.sender_indices))
message_indices = tf.range(self.edge_count)
mtr_indices = tf.to_int64(tf.transpose(tf.stack([self.sender_indices, message_indices])))
mtr_shape = tf.to_int64(tf.stack([self.vertex_count, self.edge_count]))
tensor = tf.sparse_softmax(tf.SparseTensor(indices=mtr_indices,
values=mtr_values,
dense_shape=mtr_shape))
return tensor
elif normalization[0] == "local":
mtr_values = tf.to_float(tf.ones_like(self.sender_indices))
message_indices = tf.range(self.edge_count)
mtr_indices = tf.to_int64(tf.transpose(tf.stack([self.message_types, self.sender_indices, message_indices])))
mtr_shape = tf.to_int64(tf.stack([self.label_count*2, self.vertex_count, self.edge_count]))
tensor = tf.sparse_softmax(tf.SparseTensor(indices=mtr_indices,
values=mtr_values,
dense_shape=mtr_shape))
tensor = tf.sparse_reduce_sum_sparse(tensor, 0)
return tensor
示例9: sp_gat_layer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def sp_gat_layer(node_features, adj_matrix, in_dim, out_dim, p_drop,
is_training, sparse):
"""Single graph attention layer using sparse tensors.
Args:
node_features: Sparse Tensor of shape (nb_nodes, in_dim) or SparseTensor.
adj_matrix: Sparse Tensor.
in_dim: integer specifying the input feature dimension.
out_dim: integer specifying the output feature dimension.
p_drop: dropout probability.
is_training: boolean, True if the model is being trained, False otherwise
sparse: True if node features are sparse.
Returns:
node_features: tensor of shape (nb_nodes, out_dim). New node
features obtained from applying one head of attention to input.
Raises:
"""
# Linear transform
node_features = dense(node_features, in_dim, out_dim, p_drop, is_training,
sparse)
# Attention scores
alpha = sp_compute_adj_att(node_features, adj_matrix)
alpha = tf.SparseTensor(
indices=alpha.indices,
values=tf.nn.leaky_relu(alpha.values),
dense_shape=alpha.dense_shape)
alpha = tf.sparse_softmax(alpha)
alpha = sparse_dropout(alpha, p_drop, is_training)
node_features = tf.layers.dropout(
inputs=node_features, rate=p_drop, training=is_training)
# Compute self-attention features
node_features = tf.sparse_tensor_dense_matmul(alpha, node_features)
node_features = tf.contrib.layers.bias_add(node_features)
return node_features
示例10: sp_egat_layer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def sp_egat_layer(node_features, adj_matrix, in_dim, out_dim, p_drop,
is_training, sparse):
"""Single graph attention layer using sparse tensors.
Args:
node_features: Tensor of shape (nb_nodes, in_dim) or SparseTensor.
adj_matrix: Sparse Tensor.
in_dim: integer specifying the input feature dimension.
out_dim: integer specifying the output feature dimension.
p_drop: dropout probability.
is_training: boolean, True if the model is being trained, False otherwise
sparse: True if node features are sparse.
Returns:
node_features: tensor of shape (nb_nodes, out_dim). New node
features obtained from applying one head of attention to input.
Raises:
"""
# Linear transform
node_features = dense(node_features, in_dim, out_dim, p_drop, is_training,
sparse)
# Attention scores
alpha = sp_compute_adj_att(node_features, adj_matrix)
alpha = tf.SparseTensor(
indices=alpha.indices,
values=tf.nn.leaky_relu(alpha.values),
dense_shape=alpha.dense_shape)
alpha = tf.sparse_softmax(alpha)
alpha = sparse_dropout(alpha, p_drop, is_training)
node_features = tf.layers.dropout(
inputs=node_features, rate=p_drop, training=is_training)
# Compute self-attention features
node_features = tf.sparse_tensor_dense_matmul(alpha, node_features)
node_features = tf.contrib.layers.bias_add(node_features)
return node_features
############################## MULTI LAYERS #############################
示例11: attention_mechanism
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def attention_mechanism(features, graph_adj, adj_with_self_loops_indices, coefficient_dropout_prob, weight_decay, name):
# apply a feedforward network parametrized with a weight vector to the transformed features.
input_dim = int(features.get_shape()[1])
a_i = tf.get_variable(f"{name}-att_i", [input_dim, 1], dtype=tf.float32,
initializer=tf.glorot_uniform_initializer(),
regularizer=slim.l2_regularizer(weight_decay))
a_j = tf.get_variable(f"{name}-att_j", [input_dim, 1], dtype=tf.float32,
initializer=tf.glorot_uniform_initializer(),
regularizer=slim.l2_regularizer(weight_decay))
tf.add_to_collection(ATTENTION_WEIGHTS, a_i)
tf.add_to_collection(ATTENTION_WEIGHTS, a_j)
# dims: num_nodes x input_dim, input_dim, 1 -> num_nodes x 1
att_i = tf.matmul(features, a_i)
att_i = tf.contrib.layers.bias_add(att_i)
# dims: num_nodes x input_dim, input_dim, 1 -> num_nodes x 1
att_j = tf.matmul(features, a_j)
att_j = tf.contrib.layers.bias_add(att_j)
# Extracts the relevant attention coefficients with respect to the 1-hop neighbours of each node
# Method: first extract all the attention coefficients of the left nodes of each edge, then those
# of the right nodes and add them up.
# The result is a list of relevant attention weights ordered in the same way as the edges in the
# sparse adjacency matrix.
# dims: num_nodes x 1, num_edges, num_nodes x 1, num_edges -> 1 x num_edges x 1
attention_weights_of_edges = tf.gather(att_i, adj_with_self_loops_indices[0], axis=0) + \
tf.gather(att_j, adj_with_self_loops_indices[1], axis=0)
# dims: 1 x num_edges x 1 -> num_edges
attention_weights_of_edges = tf.squeeze(attention_weights_of_edges)
# blow list of attention weights up into a sparse matrix. Use the coordinates from the original
# adjacency matrix to specify which attention weight belongs to which edge.
# Simultaneously applies the LeakyReLU as given in the paper.
# dims: num_nodes x num_nodes, num_edges -> num_nodes x num_nodes
attention_weight_matrix = tf.SparseTensor(
indices=graph_adj.indices,
values=tf.nn.leaky_relu(attention_weights_of_edges, alpha=0.2),
dense_shape=graph_adj.dense_shape
)
# finish the attention by normalizing coefficients using softmax
attention_coefficients = tf.sparse_softmax(attention_weight_matrix)
# apply dropout to attention coefficients, meaning that in every epoch a single node is only exposed to a
# sampled subset of its neighbour
attention_coefficients = tf.cond(
tf.cast(coefficient_dropout_prob, tf.bool),
true_fn=(lambda: dropout_supporting_sparse_tensors(attention_coefficients, 1.0 - coefficient_dropout_prob)),
false_fn=(lambda: attention_coefficients)
)
return attention_coefficients
示例12: sp_attn_head
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def sp_attn_head(seq, out_sz, adj_mat, activation, nb_nodes, in_drop=0.0, coef_drop=0.0, residual=False):
with tf.name_scope('sp_attn'):
if in_drop != 0.0:
seq = tf.nn.dropout(seq, 1.0 - in_drop)
seq_fts = tf.layers.conv1d(seq, out_sz, 1, use_bias=False)
# simplest self-attention possible
f_1 = tf.layers.conv1d(seq_fts, 1, 1)
f_2 = tf.layers.conv1d(seq_fts, 1, 1)
f_1 = tf.reshape(f_1, (nb_nodes, 1))
f_2 = tf.reshape(f_2, (nb_nodes, 1))
f_1 = adj_mat*f_1
f_2 = adj_mat * tf.transpose(f_2, [1,0])
logits = tf.sparse_add(f_1, f_2)
lrelu = tf.SparseTensor(indices=logits.indices,
values=tf.nn.leaky_relu(logits.values),
dense_shape=logits.dense_shape)
coefs = tf.sparse_softmax(lrelu)
if coef_drop != 0.0:
coefs = tf.SparseTensor(indices=coefs.indices,
values=tf.nn.dropout(coefs.values, 1.0 - coef_drop),
dense_shape=coefs.dense_shape)
if in_drop != 0.0:
seq_fts = tf.nn.dropout(seq_fts, 1.0 - in_drop)
# As tf.sparse_tensor_dense_matmul expects its arguments to have rank-2,
# here we make an assumption that our input is of batch size 1, and reshape appropriately.
# The method will fail in all other cases!
coefs = tf.sparse_reshape(coefs, [nb_nodes, nb_nodes])
seq_fts = tf.squeeze(seq_fts)
vals = tf.sparse_tensor_dense_matmul(coefs, seq_fts)
vals = tf.expand_dims(vals, axis=0)
vals.set_shape([1, nb_nodes, out_sz])
ret = tf.contrib.layers.bias_add(vals)
# residual connection
if residual:
if seq.shape[-1] != ret.shape[-1]:
ret = ret + conv1d(seq, ret.shape[-1], 1) # activation
else:
ret = ret + seq
return activation(ret) # activation
示例13: sp_attn_head
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_softmax [as 别名]
def sp_attn_head(seq, out_sz, adj_mat, activation, nb_nodes, in_drop=0.0, coef_drop=0.0, residual=False):
with tf.name_scope('sp_attn'):
if in_drop != 0.0:
seq = tf.nn.dropout(seq, 1.0 - in_drop)
seq_fts = tf.layers.conv1d(seq, out_sz, 1, use_bias=False)
# simplest self-attention possible
f_1 = tf.layers.conv1d(seq_fts, 1, 1)
f_2 = tf.layers.conv1d(seq_fts, 1, 1)
logits = tf.sparse_add(adj_mat * f_1, adj_mat *
tf.transpose(f_2, [0, 2, 1]))
lrelu = tf.SparseTensor(indices=logits.indices,
values=tf.nn.leaky_relu(logits.values),
dense_shape=logits.dense_shape)
coefs = tf.sparse_softmax(lrelu)
if coef_drop != 0.0:
coefs = tf.SparseTensor(indices=coefs.indices,
values=tf.nn.dropout(
coefs.values, 1.0 - coef_drop),
dense_shape=coefs.dense_shape)
if in_drop != 0.0:
seq_fts = tf.nn.dropout(seq_fts, 1.0 - in_drop)
# As tf.sparse_tensor_dense_matmul expects its arguments to have rank-2,
# here we make an assumption that our input is of batch size 1, and reshape appropriately.
# The method will fail in all other cases!
coefs = tf.sparse_reshape(coefs, [nb_nodes, nb_nodes])
seq_fts = tf.squeeze(seq_fts)
vals = tf.sparse_tensor_dense_matmul(coefs, seq_fts)
vals = tf.expand_dims(vals, axis=0)
vals.set_shape([1, nb_nodes, out_sz])
ret = tf.contrib.layers.bias_add(vals)
# residual connection
if residual:
if seq.shape[-1] != ret.shape[-1]:
ret = ret + conv1d(seq, ret.shape[-1], 1) # activation
else:
seq_fts = ret + seq
return activation(ret) # activation
# final_embed, att_val = layers.SimpleAttLayer(multi_embed, mp_att_size,
# time_major=False,
# return_alphas=True)