本文整理汇总了Python中tensorflow.sparse_mask方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.sparse_mask方法的具体用法?Python tensorflow.sparse_mask怎么用?Python tensorflow.sparse_mask使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.sparse_mask方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testBasic
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_mask [as 别名]
def testBasic(self):
values = np.random.rand(4, 4).astype(np.single)
indices = np.array([0, 2, 3, 4], dtype=np.int32)
mask_indices = np.array([0], dtype=np.int32)
out_values = values[1:, :]
out_indices = np.array([2, 3, 4], dtype=np.int32)
with self.test_session() as sess:
values_tensor = tf.convert_to_tensor(values)
indices_tensor = tf.convert_to_tensor(indices)
mask_indices_tensor = tf.convert_to_tensor(mask_indices)
t = tf.IndexedSlices(values_tensor, indices_tensor)
masked_t = tf.sparse_mask(t, mask_indices_tensor)
tf_out_values, tf_out_indices = sess.run([masked_t.values,
masked_t.indices])
self.assertAllEqual(tf_out_values, out_values)
self.assertAllEqual(tf_out_indices, out_indices)
示例2: sparse_mask
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_mask [as 别名]
def sparse_mask(a, mask_indices, name=None):
"""Masks elements of `IndexedSlices`.
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
contains a subset of the slices of `a`. Only the slices at indices not
specified in `mask_indices` are returned.
This is useful when you need to extract a subset of slices in an
`IndexedSlices` object.
For example:
```python
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]
# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])
b.indices => [26, 37]
tf.shape(b.values) => [2, 10]
```
Args:
a: An `IndexedSlices` instance.
mask_indices: Indices of elements to mask.
name: A name for the operation (optional).
Returns:
The masked `IndexedSlices` instance.
"""
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
indices = a.indices
out_indices, to_gather = setdiff1d(indices, mask_indices)
out_values = gather(a.values, to_gather, name=name)
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
示例3: sparse_mask
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_mask [as 别名]
def sparse_mask(a, mask_indices, name=None):
"""Masks elements of `IndexedSlices`.
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
contains a subset of the slices of `a`. Only the slices at indices not
specified in `mask_indices` are returned.
This is useful when you need to extract a subset of slices in an
`IndexedSlices` object.
For example:
```python
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]
# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])
b.indices => [26, 37]
tf.shape(b.values) => [2, 10]
```
Args:
* `a`: An `IndexedSlices` instance.
* `mask_indices`: Indices of elements to mask.
* `name`: A name for the operation (optional).
Returns:
The masked `IndexedSlices` instance.
"""
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
indices = a.indices
out_indices, to_gather = setdiff1d(indices, mask_indices)
out_values = gather(a.values, to_gather, name=name)
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
示例4: sparse_mask
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sparse_mask [as 别名]
def sparse_mask(a, mask_indices, name=None):
"""Masks elements of `IndexedSlices`.
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
contains a subset of the slices of `a`. Only the slices at indices not
specified in `mask_indices` are returned.
This is useful when you need to extract a subset of slices in an
`IndexedSlices` object.
For example:
```python
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices # [12, 26, 37, 45]
tf.shape(a.values) # [4, 10]
# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])
b.indices # [26, 37]
tf.shape(b.values) # [2, 10]
```
Args:
a: An `IndexedSlices` instance.
mask_indices: Indices of elements to mask.
name: A name for the operation (optional).
Returns:
The masked `IndexedSlices` instance.
"""
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
indices = a.indices
out_indices, to_gather = setdiff1d(indices, mask_indices)
out_values = gather(a.values, to_gather, name=name)
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:42,代码来源:array_ops.py