本文整理汇总了Python中tensorflow.sort方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.sort方法的具体用法?Python tensorflow.sort怎么用?Python tensorflow.sort使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.sort方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: take_top_p_logits
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def take_top_p_logits(logits, p):
"""Nucleus sampling"""
batch, sequence, _ = logits.shape.as_list()
sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1)
cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
indices = tf.stack([
tf.range(0, batch)[:, tf.newaxis],
tf.range(0, sequence)[tf.newaxis, :],
# number of indices to include
tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0),
], axis=-1)
min_values = tf.gather_nd(sorted_logits, indices)
return tf.where(
logits < min_values,
tf.ones_like(logits) * -1e10,
logits,
)
示例2: call
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def call(self, graph, feat):
r"""Compute sort pooling.
Parameters
----------
graph : DGLGraph
The graph.
feat : tf.Tensor
The input feature with shape :math:`(N, D)` where
:math:`N` is the number of nodes in the graph.
Returns
-------
tf.Tensor
The output feature with shape :math:`(B, k * D)`, where
:math:`B` refers to the batch size.
"""
with graph.local_scope():
# Sort the feature of each node in ascending order.
feat = tf.sort(feat, -1)
graph.ndata['h'] = feat
# Sort nodes according to their last features.
ret = tf.reshape(topk_nodes(graph, 'h', self.k, idx=-1)[0], (
-1, self.k * feat.shape[-1]))
return ret
示例3: _iteration_l_moments_dense
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def _iteration_l_moments_dense(
current_index, l1_sum, l2_sum, l3_sum, l4_sum, l1_factors, l2_factors,
l3_factors, l4_factors, x_rank_2):
"""Process one column of a `Tensor` and updates L-moments variables."""
current_x = x_rank_2[:, current_index]
sorted_x = tf.sort(current_x)
dim_1 = tf.shape(x_rank_2)[1]
new_l1_sum = l1_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l1_factors), axis=0)], [dim_1])
new_l2_sum = l2_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l2_factors), axis=0)], [dim_1])
new_l3_sum = l3_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l3_factors), axis=0)], [dim_1])
new_l4_sum = l4_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l4_factors), axis=0)], [dim_1])
return (tf.add(current_index, 1),
new_l1_sum, new_l2_sum, new_l3_sum, new_l4_sum, l1_factors,
l2_factors, l3_factors, l4_factors, x_rank_2)
示例4: top_p_logits
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def top_p_logits(logits, p):
"""Nucleus sampling"""
batch, _ = logits.shape.as_list()
sorted_logits = tf.sort(logits, direction="DESCENDING", axis=-1)
cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
indices = tf.stack(
[
tf.range(0, batch),
# number of indices to include
tf.maximum(
tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0
),
],
axis=-1,
)
min_values = tf.gather_nd(sorted_logits, indices)
return tf.where(logits < min_values, tf.ones_like(logits) * -1e10, logits,)
示例5: _single_token_mask
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def _single_token_mask(inputs, tgt_len, num_predict):
"""Sample individual tokens as prediction targets."""
all_indices = tf.range(tgt_len, dtype=tf.int64)
non_func_mask = tf.logical_and(
tf.not_equal(inputs, SEP_ID),
tf.not_equal(inputs, CLS_ID))
non_func_indices = tf.boolean_mask(all_indices, non_func_mask)
masked_pos = tf.random.shuffle(non_func_indices)
masked_pos = tf.sort(masked_pos[:num_predict])
target_mask = tf.sparse_to_dense(
sparse_indices=masked_pos,
output_shape=[tgt_len],
sparse_values=1.0,
default_value=0.0)
is_masked = tf.cast(target_mask, tf.bool)
return is_masked, target_mask
示例6: sort_1d
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def sort_1d(input):
return tf.sort(input), tf.cast(tf.argsort(input), dtype=tf.int64)
示例7: gumbel_softmax
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def gumbel_softmax(logits, temperature, gumbel_samples=None, samples=1, greedy=False):
""" Draw a sample from the Gumbel-Softmax distribution"""
input_shape_list = bert_utils.get_shape_list(logits, expected_rank=2)
if samples > 1:
logits = tf.expand_dims(logits, -1)
if gumbel_samples is None:
gumbel_samples = sample_gumbel(input_shape_list, samples)
if greedy:
tf.logging.info("==apply greedy based sampling and discrete relax==")
# if int(tf.__version__.split(".")[1]) < 15:
# if not use_tpu:
# logits_index = tf.contrib.framework.argsort(logits, axis=1)
# gumbel_samples_sorted = tf.contrib.framework.sort(gumbel_samples, axis=1)
# gumbel_samples_sorted = reorder(gumbel_samples_sorted, logits_index)
# else:
# else:
# logits_index = tf.argsort(logits, axis=1)
# gumbel_samples_sorted = tf.sort(gumbel_samples, axis=1)
# gumbel_samples_sorted = reorder(gumbel_samples_sorted, logits_index)
gumbel_samples = reorder_approximate(logits, gumbel_samples)
y = logits + gumbel_samples
return [tf.exp(tf.nn.log_softmax(y / temperature, axis=1)),
y]
else:
y = logits + gumbel_samples
tf.logging.info("==apply sampling based sampling and discrete relax==")
return [tf.exp(tf.nn.log_softmax(y / temperature, axis=1)),
y]
示例8: sort_key_val
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def sort_key_val(t1, t2, dim=-1):
values = tf.sort(t1, axis=dim)
t2 = tf.broadcast_to(t2, t1.shape)
return values, tf.gather(t2, tf.argsort(t1, axis=dim), axis=dim)
示例9: _apply
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def _apply(self, words):
if self.count == 0:
return tf.identity(words)
num_words = tf.shape(words)[0]
indices = tf.range(num_words)
shuffle_indices = tf.random.shuffle(indices)
keep_count = tf.maximum(num_words - self.count, 1)
keep_indices = tf.sort(shuffle_indices[:keep_count])
return tf.gather(words, keep_indices)
示例10: percent_confidence_mask_unsup
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def percent_confidence_mask_unsup(self, logits_y, labels_y, loss_l2u):
# Adapted from google-research/uda/image/main.py
# This function masks the unsupervised predictions that are below
# a set confidence threshold. # Note the following will only work
# using MSE loss and not KL-divergence.
# Calculate largest predicted probability for each image.
unsup_prob = tf.nn.softmax(logits_y, axis=-1)
largest_prob = tf.reduce_max(unsup_prob, axis=-1)
# Get the indices of the bottom x% of probabilities and mask those out.
# In other words, get the probability of the image with the x%*#numofsamples
# lowest probability and use that as the mask.
# Calculate the current confidence_mask value using the specified schedule:
sorted_probs = tf.sort(largest_prob, axis=-1, direction='ASCENDING')
sort_index = tf.math.multiply(tf.to_float(tf.shape(sorted_probs)[0]), FLAGS.percent_mask)
curr_confidence_mask = tf.slice(sorted_probs, [tf.to_int64(sort_index)], [1])
# Mask the loss for images that don't contain a predicted
# probability above the threshold.
loss_mask = tf.cast(tf.greater(largest_prob, curr_confidence_mask), tf.float32)
tf.summary.scalar('losses/high_prob_ratio', tf.reduce_mean(loss_mask)) # The ratio of unl images above the thresh
tf.summary.scalar('losses/percent_confidence_mask', tf.reshape(curr_confidence_mask,[]))
loss_mask = tf.stop_gradient(loss_mask)
loss_l2u = loss_l2u * tf.expand_dims(loss_mask, axis=-1)
# Return the average unsupervised loss.
avg_unsup_loss = (tf.reduce_sum(loss_l2u) /
tf.maximum(tf.reduce_sum(loss_mask) * FLAGS.nclass, 1))
return avg_unsup_loss
示例11: _iteration_l_moments_sparse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def _iteration_l_moments_sparse(
current_index, l1_sum, l2_sum, l3_sum, l4_sum, count_samples,
count_pairs, count_triplets, count_quadruplets, x_rank_2):
"""Process one column of a `SparseTensor` and updates L-moments variables."""
current_x = tf.boolean_mask(
x_rank_2.values,
tf.math.equal(x_rank_2.indices[:, 1], [current_index]))
sorted_x = tf.sort(current_x, axis=0)
num_samples = tf.shape(current_x)[0]
(current_samples, current_pairs, current_triplets, current_quadruplets,
l1_factors, l2_factors, l3_factors,
l4_factors) = _num_terms_and_factors(num_samples, x_rank_2.values.dtype)
dim_1 = x_rank_2.dense_shape[1]
new_l1_sum = l1_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l1_factors), axis=0)], [dim_1])
new_l2_sum = l2_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l2_factors), axis=0)], [dim_1])
new_l3_sum = l3_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l3_factors), axis=0)], [dim_1])
new_l4_sum = l4_sum + tf.scatter_nd(
[[current_index]],
[tf.reduce_sum(tf.multiply(sorted_x, l4_factors), axis=0)], [dim_1])
new_count_samples = count_samples + tf.scatter_nd(
[[current_index]], [current_samples], [dim_1])
new_count_pairs = count_pairs + tf.scatter_nd(
[[current_index]], [current_pairs], [dim_1])
new_count_triplets = count_triplets + tf.scatter_nd(
[[current_index]], [current_triplets], [dim_1])
new_count_quadruplets = count_quadruplets + tf.scatter_nd(
[[current_index]], [current_quadruplets], [dim_1])
return (tf.add(current_index, 1),
new_l1_sum, new_l2_sum, new_l3_sum, new_l4_sum,
new_count_samples, new_count_pairs, new_count_triplets,
new_count_quadruplets, x_rank_2)
示例12: top_p_logits
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def top_p_logits(logits, p):
"""Took from OpenAI GPT-2 Implememtation"""
batch = tf.shape(logits)[0]
sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1)
cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
indices = tf.stack([
tf.range(0, batch),
tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0),
], axis=-1)
min_values = tf.gather_nd(sorted_logits, indices)
return tf.where(
logits < min_values,
tf.ones_like(logits) * -1e10,
logits,
)
示例13: top_p_logits
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def top_p_logits(logits, p):
with tf.variable_scope('top_p_logits'):
logits_sort = tf.sort(logits, direction='DESCENDING')
# logits_sort = (logits_sort[i,:] for i in range(logits_sort.get_shape().as_list()[0]))
probs_sort = tf.nn.softmax(logits_sort)
probs_sums = tf.cumsum(probs_sort, axis=1, exclusive=True)
logits_masked = tf.where(probs_sums < p, logits_sort, tf.ones_like(logits_sort)*1000) # [batchsize, vocab]
min_logits = tf.reduce_min(logits_masked, axis=1, keepdims=True) # [batchsize, 1]
return tf.where(
logits < min_logits,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits,
)
示例14: sample_token
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def sample_token(logits):
"""
Inputs:
logits: tf.Tensor([batch_size,len,num_tokens])
Outpus:
samples: tf.Tensor([batch_size,len,1])
"""
# credits: https://github.com/nshepperd/gpt-2
logits /= FLAGS.temperature
batch_size = tf.shape(logits)[0]
seq_len = tf.shape(logits)[1]
num_toks = tf.shape(logits)[2]
if sampling_strategy() == 'top_p':
logits_sorted = tf.sort(logits,
direction="DESCENDING",
axis=-1)
probs = tf.nn.softmax(logits_sorted, axis=-1)
cum_probs = tf.math.cumsum(probs,
axis=-1,
exclusive=True)
logits_masked = tf.where(cum_probs < FLAGS.top_p,
logits_sorted,
tf.ones_like(logits_sorted) * 100)
min_logits = tf.reduce_min(logits_masked, axis=-1)
logits_masked = tf.where(logits < min_logits,
tf.ones_like(logits) * -1e10,
logits)
elif sampling_strategy() == "top_k":
if FLAGS.top_k != 0:
values, _ = tf.nn.top_k(logits, k=FLAGS.top_k)
min_values = values[:, :, -1:]
logits_masked = tf.where(
logits < min_values,
tf.ones_like(logits, dtype=logits.dtype) * -1e10,
logits,
)
else:
raise NotImplementedError("Invalid sampling strategy")
logits_masked = tf.reshape(logits_masked, (-1, num_toks))
samples = tf.random.categorical(logits_masked,
num_samples=1,
dtype=tf.int32)
probs = tf.nn.softmax(tf.reshape(logits, (-1, num_toks)), axis=-1)
confidences = tf.gather_nd(params=probs, batch_dims=1, indices=samples)
return tf.reshape(samples, (batch_size, seq_len, 1)),\
tf.reshape(confidences, (batch_size, seq_len, 1))
示例15: clip_eta
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sort [as 别名]
def clip_eta(eta, ord, eps):
"""
Helper function to clip the perturbation to epsilon norm ball.
:param eta: A tensor with the current perturbation.
:param ord: Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.
:param eps: Epsilon, bound of the perturbation.
"""
# Clipping perturbation eta to self.ord norm ball
if ord not in [np.inf, 1, 2]:
raise ValueError('ord must be np.inf, 1, or 2.')
reduc_ind = list(xrange(1, len(eta.get_shape())))
avoid_zero_div = 1e-12
if ord == np.inf:
eta = clip_by_value(eta, -eps, eps)
elif ord == 1:
# Implements a projection algorithm onto the l1-ball from
# (Duchi et al. 2008) that runs in time O(d*log(d)) where d is the
# input dimension.
# Paper link (Duchi et al. 2008): https://dl.acm.org/citation.cfm?id=1390191
eps = tf.cast(eps, eta.dtype)
dim = tf.reduce_prod(tf.shape(eta)[1:])
eta_flat = tf.reshape(eta, (-1, dim))
abs_eta = tf.abs(eta_flat)
if 'sort' in dir(tf):
mu = -tf.sort(-abs_eta, axis=-1)
else:
# `tf.sort` is only available in TF 1.13 onwards
mu = tf.nn.top_k(abs_eta, k=dim, sorted=True)[0]
cumsums = tf.cumsum(mu, axis=-1)
js = tf.cast(tf.divide(1, tf.range(1, dim + 1)), eta.dtype)
t = tf.cast(tf.greater(mu - js * (cumsums - eps), 0), eta.dtype)
rho = tf.argmax(t * cumsums, axis=-1)
rho_val = tf.reduce_max(t * cumsums, axis=-1)
theta = tf.divide(rho_val - eps, tf.cast(1 + rho, eta.dtype))
eta_sgn = tf.sign(eta_flat)
eta_proj = eta_sgn * tf.maximum(abs_eta - theta[:, tf.newaxis], 0)
eta_proj = tf.reshape(eta_proj, tf.shape(eta))
norm = tf.reduce_sum(tf.abs(eta), reduc_ind)
eta = tf.where(tf.greater(norm, eps), eta_proj, eta)
elif ord == 2:
# avoid_zero_div must go inside sqrt to avoid a divide by zero
# in the gradient through this operation
norm = tf.sqrt(tf.maximum(avoid_zero_div,
reduce_sum(tf.square(eta),
reduc_ind,
keepdims=True)))
# We must *clip* to within the norm ball, not *normalize* onto the
# surface of the ball
factor = tf.minimum(1., div(eps, norm))
eta = eta * factor
return eta