本文整理汇总了Python中tensorflow.softmax_cross_entropy_with_logits方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.softmax_cross_entropy_with_logits方法的具体用法?Python tensorflow.softmax_cross_entropy_with_logits怎么用?Python tensorflow.softmax_cross_entropy_with_logits使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.softmax_cross_entropy_with_logits方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_goodpixel_logits_and_1hot_labels
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import softmax_cross_entropy_with_logits [as 别名]
def get_goodpixel_logits_and_1hot_labels(labels_numeric_3d, logits_4d, num_classes):
"""
Returns two tensors of size (num_valid_entries, num_classes).
The function converts annotation batch tensor input of the size
(batch_size, height, width) into label tensor (batch_size, height,
width, num_classes) and then selects only valid entries, resulting
in tensor of the size (num_valid_entries, num_classes). The function
also returns the tensor with corresponding valid entries in the logits
tensor. Overall, two tensors of the same sizes are returned and later on
can be used as an input into tf.softmax_cross_entropy_with_logits() to
get the cross entropy error for each entry.
"""
binary_masks_by_class = [tf.equal(labels_numeric_3d, x) for x in range(num_classes)]
labels_one_hot_4d_f = tf.to_float(tf.stack(binary_masks_by_class, axis=-1))
# Find unmasked pixels good for evaluation:
# (gives a 2D tensor, flat list of index triples - spacial and batch dimensions are lost here)
valid_pixel_coord_vectors = tf.where(labels_numeric_3d < num_classes)
# Select a flat list of the values (which are actually 1-hot vectors) for al valid pixels, giving 2D tensor
goodpixels_labels_one_hot_2d_f = tf.gather_nd(params=labels_one_hot_4d_f, indices=valid_pixel_coord_vectors)
goodpixels_logits_2d = tf.gather_nd(params=logits_4d, indices=valid_pixel_coord_vectors)
return goodpixels_labels_one_hot_2d_f, goodpixels_logits_2d
示例2: get_valid_logits_and_labels
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import softmax_cross_entropy_with_logits [as 别名]
def get_valid_logits_and_labels(annotation_batch_tensor, logits_batch_tensor, class_labels):
"""Returns two tensors of size (num_valid_entries, num_classes).
The function converts annotation batch tensor input of the size
(batch_size, height, width) into label tensor (batch_size, height,
width, num_classes) and then selects only valid entries, resulting
in tensor of the size (num_valid_entries, num_classes). The function
also returns the tensor with corresponding valid entries in the logits
tensor. Overall, two tensors of the same sizes are returned and later on
can be used as an input into tf.softmax_cross_entropy_with_logits() to
get the cross entropy error for each entry.
Parameters
----------
annotation_batch_tensor : Tensor of size (batch_size, width, height)
Tensor with class labels for each batch
logits_batch_tensor : Tensor of size (batch_size, width, height, num_classes)
Tensor with logits. Usually can be achived after inference of fcn network.
class_labels : list of ints
List that contains the numbers that represent classes. Last
value in the list should represent the number that was used
for masking out.
Returns
-------
(valid_labels_batch_tensor, valid_logits_batch_tensor) : Two Tensors of size (num_valid_eintries, num_classes).
Tensors that represent valid labels and logits.
"""
labels_batch_tensor = get_labels_from_annotation_batch(annotation_batch_tensor=annotation_batch_tensor, class_labels=class_labels)
valid_batch_indices = get_valid_entries_indices_from_annotation_batch(annotation_batch_tensor=annotation_batch_tensor, class_labels=class_labels)
valid_labels_batch_tensor = tf.gather_nd(params=labels_batch_tensor, indices=valid_batch_indices)
valid_logits_batch_tensor = tf.gather_nd(params=logits_batch_tensor, indices=valid_batch_indices)
return valid_labels_batch_tensor, valid_logits_batch_tensor
示例3: get_labels_from_annotation
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import softmax_cross_entropy_with_logits [as 别名]
def get_labels_from_annotation(annotation_tensor, class_labels):
"""Returns tensor of size (width, height, num_classes) derived from annotation tensor.
The function returns tensor that is of a size (width, height, num_classes) which
is derived from annotation tensor with sizes (width, height) where value at
each position represents a class. The functions requires a list with class
values like [0, 1, 2 ,3] -- they are used to derive labels. Derived values will
be ordered in the same way as the class numbers were provided in the list. Last
value in the aforementioned list represents a value that indicate that the pixel
should be masked out. So, the size of num_classes := len(class_labels) - 1.
Parameters
----------
annotation_tensor : Tensor of size (width, height)
Tensor with class labels for each element
class_labels : list of ints
List that contains the numbers that represent classes. Last
value in the list should represent the number that was used
for masking out.
Returns
-------
labels_2d_stacked : Tensor of size (width, height, num_classes).
Tensor with labels for each pixel.
"""
# Last value in the classes list should show
# which number was used in the annotation to mask out
# the ambigious regions or regions that should not be
# used for training.
# TODO: probably replace class_labels list with some custom object
valid_entries_class_labels = class_labels[:-1]
# Stack the binary masks for each class
labels_2d = list(map(lambda x: tf.equal(annotation_tensor, x), valid_entries_class_labels))
# Perform the merging of all of the binary masks into one matrix
labels_2d_stacked = tf.stack(labels_2d, axis=2)
# Convert tf.bool to tf.float
# Later on in the labels and logits will be used
# in tf.softmax_cross_entropy_with_logits() function
# where they have to be of the float type.
labels_2d_stacked_float = tf.to_float(labels_2d_stacked)
return labels_2d_stacked_float
示例4: classifier
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import softmax_cross_entropy_with_logits [as 别名]
def classifier(x, dropout):
"""
AlexNet fully connected layers definition
Args:
x: tensor of shape [batch_size, width, height, channels]
dropout: probability of non dropping out units
Returns:
fc3: 1000 linear tensor taken just before applying the softmax operation
it is needed to feed it to tf.softmax_cross_entropy_with_logits()
softmax: 1000 linear tensor representing the output probabilities of the image to classify
"""
pool5 = cnn(x)
dim = pool5.get_shape().as_list()
flat_dim = dim[1] * dim[2] * dim[3] # 6 * 6 * 256
flat = tf.reshape(pool5, [-1, flat_dim])
with tf.name_scope('alexnet_classifier') as scope:
with tf.name_scope('alexnet_classifier_fc1') as inner_scope:
wfc1 = tu.weight([flat_dim, 4096], name='wfc1')
bfc1 = tu.bias(0.0, [4096], name='bfc1')
fc1 = tf.add(tf.matmul(flat, wfc1), bfc1)
#fc1 = tu.batch_norm(fc1)
fc1 = tu.relu(fc1)
fc1 = tf.nn.dropout(fc1, dropout)
with tf.name_scope('alexnet_classifier_fc2') as inner_scope:
wfc2 = tu.weight([4096, 4096], name='wfc2')
bfc2 = tu.bias(0.0, [4096], name='bfc2')
fc2 = tf.add(tf.matmul(fc1, wfc2), bfc2)
#fc2 = tu.batch_norm(fc2)
fc2 = tu.relu(fc2)
fc2 = tf.nn.dropout(fc2, dropout)
with tf.name_scope('alexnet_classifier_output') as inner_scope:
wfc3 = tu.weight([4096, 1000], name='wfc3')
bfc3 = tu.bias(0.0, [1000], name='bfc3')
fc3 = tf.add(tf.matmul(fc2, wfc3), bfc3)
softmax = tf.nn.softmax(fc3)
return fc3, softmax
示例5: classifier
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import softmax_cross_entropy_with_logits [as 别名]
def classifier(x, dropout):
"""
AlexNet fully connected layers definition
Args:
x: tensor of shape [batch_size, width, height, channels]
dropout: probability of non dropping out units
Returns:
fc3: 1000 linear tensor taken just before applying the softmax operation
it is needed to feed it to tf.softmax_cross_entropy_with_logits()
softmax: 1000 linear tensor representing the output probabilities of the image to classify
"""
pool5 = alexnet(x)
dim = pool5.get_shape().as_list()
flat_dim = dim[1] * dim[2] * dim[3] # 6 * 6 * 256
flat = tf.reshape(pool5, [-1, flat_dim])
with tf.name_scope('classifier') as scope:
with tf.name_scope('fullyconected1') as inner_scope:
wfc1 = tu.weight([flat_dim, 4096], name='wfc1')
bfc1 = tu.bias(0.0, [4096], name='bfc1')
fc1 = tf.add(tf.matmul(flat, wfc1), bfc1)
#fc1 = tu.batch_norm(fc1)
fc1 = tu.relu(fc1)
fc1 = tf.nn.dropout(fc1, dropout)
with tf.name_scope('fullyconected2') as inner_scope:
wfc2 = tu.weight([4096, 4096], name='wfc2')
bfc2 = tu.bias(0.0, [4096], name='bfc2')
fc2 = tf.add(tf.matmul(fc1, wfc2), bfc2)
#fc2 = tu.batch_norm(fc2)
fc2 = tu.relu(fc2)
fc2 = tf.nn.dropout(fc2, dropout)
with tf.name_scope('classifier_output') as inner_scope:
wfc3 = tu.weight([4096, 1000], name='wfc3')
bfc3 = tu.bias(0.0, [1000], name='bfc3')
fc3 = tf.add(tf.matmul(fc2, wfc3), bfc3)
softmax = tf.nn.softmax(fc3)
return fc3, softmax
示例6: get_labels_from_annotation
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import softmax_cross_entropy_with_logits [as 别名]
def get_labels_from_annotation(annotation_tensor, class_labels):
"""Returns tensor of size (width, height, num_classes) derived from annotation tensor.
The function returns tensor that is of a size (width, height, num_classes) which
is derived from annotation tensor with sizes (width, height) where value at
each position represents a class. The functions requires a list with class
values like [0, 1, 2 ,3] -- they are used to derive labels. Derived values will
be ordered in the same way as the class numbers were provided in the list. Last
value in the aforementioned list represents a value that indicate that the pixel
should be masked out. So, the size of num_classes := len(class_labels) - 1.
Parameters
----------
annotation_tensor : Tensor of size (width, height)
Tensor with class labels for each element
class_labels : list of ints
List that contains the numbers that represent classes. Last
value in the list should represent the number that was used
for masking out.
Returns
-------
labels_2d_stacked : Tensor of size (width, height, num_classes).
Tensor with labels for each pixel.
"""
# Last value in the classes list should show
# which number was used in the annotation to mask out
# the ambigious regions or regions that should not be
# used for training.
# TODO: probably replace class_labels list with some custom object
valid_entries_class_labels = class_labels[:-1]
# Stack the binary masks for each class
labels_2d = map(lambda x: tf.equal(annotation_tensor, x),
valid_entries_class_labels)
# Perform the merging of all of the binary masks into one matrix
labels_2d_stacked = tf.stack(labels_2d, axis=2)
# Convert tf.bool to tf.float
# Later on in the labels and logits will be used
# in tf.softmax_cross_entropy_with_logits() function
# where they have to be of the float type.
labels_2d_stacked_float = tf.to_float(labels_2d_stacked)
return labels_2d_stacked_float
示例7: get_valid_logits_and_labels
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import softmax_cross_entropy_with_logits [as 别名]
def get_valid_logits_and_labels(annotation_batch_tensor,
logits_batch_tensor,
class_labels):
"""Returns two tensors of size (num_valid_entries, num_classes).
The function converts annotation batch tensor input of the size
(batch_size, height, width) into label tensor (batch_size, height,
width, num_classes) and then selects only valid entries, resulting
in tensor of the size (num_valid_entries, num_classes). The function
also returns the tensor with corresponding valid entries in the logits
tensor. Overall, two tensors of the same sizes are returned and later on
can be used as an input into tf.softmax_cross_entropy_with_logits() to
get the cross entropy error for each entry.
Parameters
----------
annotation_batch_tensor : Tensor of size (batch_size, width, height)
Tensor with class labels for each batch
logits_batch_tensor : Tensor of size (batch_size, width, height, num_classes)
Tensor with logits. Usually can be achived after inference of fcn network.
class_labels : list of ints
List that contains the numbers that represent classes. Last
value in the list should represent the number that was used
for masking out.
Returns
-------
(valid_labels_batch_tensor, valid_logits_batch_tensor) : Two Tensors of size (num_valid_eintries, num_classes).
Tensors that represent valid labels and logits.
"""
labels_batch_tensor = get_labels_from_annotation_batch(annotation_batch_tensor=annotation_batch_tensor,
class_labels=class_labels)
valid_batch_indices = get_valid_entries_indices_from_annotation_batch(annotation_batch_tensor=annotation_batch_tensor,
class_labels=class_labels)
valid_labels_batch_tensor = tf.gather_nd(params=labels_batch_tensor, indices=valid_batch_indices)
valid_logits_batch_tensor = tf.gather_nd(params=logits_batch_tensor, indices=valid_batch_indices)
return valid_labels_batch_tensor, valid_logits_batch_tensor