当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.shape方法代码示例

本文整理汇总了Python中tensorflow.shape方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.shape方法的具体用法?Python tensorflow.shape怎么用?Python tensorflow.shape使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.shape方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def build(self, input_shape):
        if not self.supports_masking:
            if not isinstance(input_shape, list) or len(input_shape) != 3:
                raise ValueError('A `AttentionSequencePoolingLayer` layer should be called '
                                 'on a list of 3 inputs')

            if len(input_shape[0]) != 3 or len(input_shape[1]) != 3 or len(input_shape[2]) != 2:
                raise ValueError("Unexpected inputs dimensions,the 3 tensor dimensions are %d,%d and %d , expect to be 3,3 and 2" % (
                    len(input_shape[0]), len(input_shape[1]), len(input_shape[2])))

            if input_shape[0][-1] != input_shape[1][-1] or input_shape[0][1] != 1 or input_shape[2][1] != 1:
                raise ValueError('A `AttentionSequencePoolingLayer` layer requires '
                                 'inputs of a 3 inputs with shape (None,1,embedding_size),(None,T,embedding_size) and (None,1)'
                                 'Got different shapes: %s,%s and %s' % (input_shape))
        else:
            pass
        super(AttentionSequencePoolingLayer, self).build(
            input_shape)  # Be sure to call this somewhere! 
开发者ID:ShenDezhou,项目名称:icme2019,代码行数:20,代码来源:sequence.py

示例2: call

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def call(self, x):
        if (self.size == None) or (self.mode == 'sum'):
            self.size = int(x.shape[-1])

        position_j = 1. / \
            K.pow(10000., 2 * K.arange(self.size / 2, dtype='float32') / self.size)
        position_j = K.expand_dims(position_j, 0)

        position_i = tf.cumsum(K.ones_like(x[:, :, 0]), 1) - 1
        position_i = K.expand_dims(position_i, 2)
        position_ij = K.dot(position_i, position_j)
        outputs = K.concatenate(
            [K.cos(position_ij), K.sin(position_ij)], 2)

        if self.mode == 'sum':
            if self.scale:
                outputs = outputs * outputs ** 0.5
            return x + outputs
        elif self.mode == 'concat':
            return K.concatenate([outputs, x], 2) 
开发者ID:ShenDezhou,项目名称:icme2019,代码行数:22,代码来源:sequence.py

示例3: _mapper

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def _mapper(example_proto):
  features = {
      'samples': tf.FixedLenSequenceFeature([1], tf.float32, allow_missing=True),
      'label': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True)
  }
  example = tf.parse_single_example(example_proto, features)

  wav = example['samples'][:, 0]

  wav = wav[:16384]
  wav_len = tf.shape(wav)[0]
  wav = tf.pad(wav, [[0, 16384 - wav_len]])

  label = tf.reduce_join(example['label'], 0)

  return wav, label 
开发者ID:acheketa,项目名称:cwavegan,代码行数:18,代码来源:dump_tfrecord.py

示例4: _create_autosummary_var

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def _create_autosummary_var(name, value_expr):
    assert not _autosummary_finalized
    v = tf.cast(value_expr, tf.float32)
    if v.shape.ndims is 0:
        v = [v, np.float32(1.0)]
    elif v.shape.ndims is 1:
        v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
    else:
        v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
    v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
    with tf.control_dependencies(None):
        var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
    update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
    if name in _autosummary_vars:
        _autosummary_vars[name].append(var)
    else:
        _autosummary_vars[name] = [var]
    return update_op

#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:24,代码来源:tfutil.py

示例5: print_layers

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def print_layers(self, title=None, hide_layers_with_no_params=False):
        if title is None: title = self.name
        print()
        print('%-28s%-12s%-24s%-24s' % (title, 'Params', 'OutputShape', 'WeightShape'))
        print('%-28s%-12s%-24s%-24s' % (('---',) * 4))

        total_params = 0
        for layer_name, layer_output, layer_trainables in self.list_layers():
            weights = [var for var in layer_trainables if var.name.endswith('/weight:0')]
            num_params = sum(np.prod(shape_to_list(var.shape)) for var in layer_trainables)
            total_params += num_params
            if hide_layers_with_no_params and num_params == 0:
                continue

            print('%-28s%-12s%-24s%-24s' % (
                layer_name,
                num_params if num_params else '-',
                layer_output.shape,
                weights[0].shape if len(weights) == 1 else '-'))

        print('%-28s%-12s%-24s%-24s' % (('---',) * 4))
        print('%-28s%-12s%-24s%-24s' % ('Total', total_params, '', ''))
        print()

    # Construct summary ops to include histograms of all trainable parameters in TensorBoard. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:27,代码来源:tfutil.py

示例6: fprop

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def fprop(self, x, y, **kwargs):
        if self.attack is not None:
            x = x, self.attack(x)
        else:
            x = x,

        # Catching RuntimeError: Variable -= value not supported by tf.eager.
        try:
            y -= self.smoothing * (y - 1. / tf.cast(y.shape[-1], tf.float32))
        except RuntimeError:
            y.assign_sub(self.smoothing * (y - 1. / tf.cast(y.shape[-1],
                                                            tf.float32)))

        logits = [self.model.get_logits(x, **kwargs) for x in x]
        loss = sum(
            softmax_cross_entropy_with_logits(labels=y,
                                              logits=logit)
            for logit in logits)
        warnings.warn("LossCrossEntropy is deprecated, switch to "
                      "CrossEntropy. LossCrossEntropy may be removed on "
                      "or after 2019-03-06.")
        return loss 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:24,代码来源:loss.py

示例7: model_argmax

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def model_argmax(sess, x, predictions, samples, feed=None):
    """
    Helper function that computes the current class prediction
    :param sess: TF session
    :param x: the input placeholder
    :param predictions: the model's symbolic output
    :param samples: numpy array with input samples (dims must match x)
    :param feed: An optional dictionary that is appended to the feeding
             dictionary before the session runs. Can be used to feed
             the learning phase of a Keras model for instance.
    :return: the argmax output of predictions, i.e. the current predicted class
    """
    feed_dict = {x: samples}
    if feed is not None:
        feed_dict.update(feed)
    probabilities = sess.run(predictions, feed_dict)

    if samples.shape[0] == 1:
        return np.argmax(probabilities)
    else:
        return np.argmax(probabilities, axis=1) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:23,代码来源:utils_tf.py

示例8: _inv_preemphasis

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def _inv_preemphasis(x):
    N = tf.shape(x)[0]
    i = tf.constant(0)
    W = tf.zeros(shape=tf.shape(x), dtype=tf.float32)

    def condition(i, y):
        return tf.less(i, N)

    def body(i, y):
        tmp = tf.slice(x, [0], [i + 1])
        tmp = tf.concat([tf.zeros([N - i - 1]), tmp], -1)
        y = hparams.preemphasis * y + tmp
        i = tf.add(i, 1)
        return [i, y]

    final = tf.while_loop(condition, body, [i, W])

    y = final[1]

    return y 
开发者ID:candlewill,项目名称:Griffin_lim,代码行数:22,代码来源:griffin_lim.py

示例9: pad_and_reshape

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def pad_and_reshape(instr_spec, frame_length, F):
    """
    :param instr_spec:
    :param frame_length:
    :param F:
    :returns:
    """
    spec_shape = tf.shape(instr_spec)
    extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1]))
    n_extra_row = (frame_length) // 2 + 1 - F
    extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
    extended_spec = tf.concat([instr_spec, extension], axis=2)
    old_shape = tf.shape(extended_spec)
    new_shape = tf.concat([
        [old_shape[0] * old_shape[1]],
        old_shape[2:]],
        axis=0)
    processed_instr_spec = tf.reshape(extended_spec, new_shape)
    return processed_instr_spec 
开发者ID:deezer,项目名称:spleeter,代码行数:21,代码来源:tensor.py

示例10: check_tensor_shape

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def check_tensor_shape(tensor_tf, target_shape):
    """ Return a Tensorflow boolean graph that indicates whether
    sample[features_key] has the specified target shape. Only check
    not None entries of target_shape.

    :param tensor_tf: Tensor to check shape for.
    :param target_shape: Target shape to compare tensor to.
    :returns: True if shape is valid, False otherwise (as TF boolean).
    """
    result = tf.constant(True)
    for i, target_length in enumerate(target_shape):
        if target_length:
            result = tf.logical_and(
                result,
                tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i]))
    return result 
开发者ID:deezer,项目名称:spleeter,代码行数:18,代码来源:tensor.py

示例11: _inverse_stft

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def _inverse_stft(self, stft_t, time_crop=None):
        """ Inverse and reshape the given STFT

        :param stft_t: input STFT
        :returns: inverse STFT (waveform)
        """
        inversed = inverse_stft(
            tf.transpose(stft_t, perm=[2, 0, 1]),
            self._frame_length,
            self._frame_step,
            window_fn=lambda frame_length, dtype: (
                hann_window(frame_length, periodic=True, dtype=dtype))
        ) * self.WINDOW_COMPENSATION_FACTOR
        reshaped = tf.transpose(inversed)
        if time_crop is None:
            time_crop = tf.shape(self._features['waveform'])[0]
        return reshaped[:time_crop, :] 
开发者ID:deezer,项目名称:spleeter,代码行数:19,代码来源:__init__.py

示例12: get_logits

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def get_logits(new_input, length, first=[]):
    """
    Compute the logits for a given waveform.

    First, preprocess with the TF version of MFC above,
    and then call DeepSpeech on the features.
    """
    # new_input = tf.Print(new_input, [tf.shape(new_input)])

    # We need to init DeepSpeech the first time we're called
    if first == []:
        first.append(False)
        # Okay, so this is ugly again.
        # We just want it to not crash.
        tf.app.flags.FLAGS.alphabet_config_path = "DeepSpeech/data/alphabet.txt"
        DeepSpeech.initialize_globals()
        print('initialized deepspeech globals')

    batch_size = new_input.get_shape()[0]

    # 1. Compute the MFCCs for the input audio
    # (this is differentable with our implementation above)
    empty_context = np.zeros((batch_size, 9, 26), dtype=np.float32)
    new_input_to_mfcc = compute_mfcc(new_input)[:, ::2]
    features = tf.concat((empty_context, new_input_to_mfcc, empty_context), 1)

    # 2. We get to see 9 frames at a time to make our decision,
    # so concatenate them together.
    features = tf.reshape(features, [new_input.get_shape()[0], -1])
    features = tf.stack([features[:, i:i+19*26] for i in range(0,features.shape[1]-19*26+1,26)],1)
    features = tf.reshape(features, [batch_size, -1, 19*26])

    # 3. Whiten the data
    mean, var = tf.nn.moments(features, axes=[0,1,2])
    features = (features-mean)/(var**.5)

    # 4. Finally we process it with DeepSpeech
    logits = DeepSpeech.BiRNN(features, length, [0]*10)

    return logits 
开发者ID:rtaori,项目名称:Black-Box-Audio,代码行数:42,代码来源:tf_logits.py

示例13: get_sequence_output

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def get_sequence_output(self):
        """Gets final hidden layer of encoder.

        Returns:
          float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
          to the final hidden of the transformer encoder.
        """
        return self.sequence_output 
开发者ID:Socialbird-AILab,项目名称:BERT-Classification-Tutorial,代码行数:10,代码来源:modeling.py

示例14: get_embedding_output

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def get_embedding_output(self):
        """Gets output of the embedding lookup (i.e., input to the transformer).

        Returns:
          float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
          to the output of the embedding layer, after summing the word
          embeddings with the positional embeddings and the token type embeddings,
          then performing layer normalization. This is the input to the transformer.
        """
        return self.embedding_output 
开发者ID:Socialbird-AILab,项目名称:BERT-Classification-Tutorial,代码行数:12,代码来源:modeling.py

示例15: create_attention_mask_from_input_mask

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import shape [as 别名]
def create_attention_mask_from_input_mask(from_tensor, to_mask):
    """Create 3D attention mask from a 2D tensor mask.

    Args:
      from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
      to_mask: int32 Tensor of shape [batch_size, to_seq_length].

    Returns:
      float Tensor of shape [batch_size, from_seq_length, to_seq_length].
    """
    from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
    batch_size = from_shape[0]
    from_seq_length = from_shape[1]

    to_shape = get_shape_list(to_mask, expected_rank=2)
    to_seq_length = to_shape[1]

    to_mask = tf.cast(
        tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)

    # We don't assume that `from_tensor` is a mask (although it could be). We
    # don't actually care if we attend *from* padding tokens (only *to* padding)
    # tokens so we create a tensor of all ones.
    #
    # `broadcast_ones` = [batch_size, from_seq_length, 1]
    broadcast_ones = tf.ones(
        shape=[batch_size, from_seq_length, 1], dtype=tf.float32)

    # Here we broadcast along two dimensions to create the mask.
    mask = broadcast_ones * to_mask

    return mask 
开发者ID:Socialbird-AILab,项目名称:BERT-Classification-Tutorial,代码行数:34,代码来源:modeling.py


注:本文中的tensorflow.shape方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。