本文整理汇总了Python中tensorflow.serialize_sparse方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.serialize_sparse方法的具体用法?Python tensorflow.serialize_sparse怎么用?Python tensorflow.serialize_sparse使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.serialize_sparse方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testSerializeDeserializeMany
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def testSerializeDeserializeMany(self):
with self.test_session(use_gpu=False) as sess:
sp_input0 = self._SparseTensorValue_5x6(np.arange(6))
sp_input1 = self._SparseTensorValue_3x4(np.arange(6))
serialized0 = tf.serialize_sparse(sp_input0)
serialized1 = tf.serialize_sparse(sp_input1)
serialized_concat = tf.stack([serialized0, serialized1])
sp_deserialized = tf.deserialize_many_sparse(
serialized_concat, dtype=tf.int32)
combined_indices, combined_values, combined_shape = sess.run(
sp_deserialized)
self.assertAllEqual(combined_indices[:6, 0], [0] * 6) # minibatch 0
self.assertAllEqual(combined_indices[:6, 1:], sp_input0[0])
self.assertAllEqual(combined_indices[6:, 0], [1] * 6) # minibatch 1
self.assertAllEqual(combined_indices[6:, 1:], sp_input1[0])
self.assertAllEqual(combined_values[:6], sp_input0[1])
self.assertAllEqual(combined_values[6:], sp_input1[1])
self.assertAllEqual(combined_shape, [2, 5, 6])
示例2: testFeedSerializeDeserializeMany
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def testFeedSerializeDeserializeMany(self):
with self.test_session(use_gpu=False) as sess:
sp_input0 = self._SparseTensorPlaceholder()
sp_input1 = self._SparseTensorPlaceholder()
input0_val = self._SparseTensorValue_5x6(np.arange(6))
input1_val = self._SparseTensorValue_3x4(np.arange(6))
serialized0 = tf.serialize_sparse(sp_input0)
serialized1 = tf.serialize_sparse(sp_input1)
serialized_concat = tf.stack([serialized0, serialized1])
sp_deserialized = tf.deserialize_many_sparse(
serialized_concat, dtype=tf.int32)
combined_indices, combined_values, combined_shape = sess.run(
sp_deserialized, {sp_input0: input0_val, sp_input1: input1_val})
self.assertAllEqual(combined_indices[:6, 0], [0] * 6) # minibatch 0
self.assertAllEqual(combined_indices[:6, 1:], input0_val[0])
self.assertAllEqual(combined_indices[6:, 0], [1] * 6) # minibatch 1
self.assertAllEqual(combined_indices[6:, 1:], input1_val[0])
self.assertAllEqual(combined_values[:6], input0_val[1])
self.assertAllEqual(combined_values[6:], input1_val[1])
self.assertAllEqual(combined_shape, [2, 5, 6])
示例3: testDeserializeFailsWrongType
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def testDeserializeFailsWrongType(self):
with self.test_session(use_gpu=False) as sess:
sp_input0 = self._SparseTensorPlaceholder()
sp_input1 = self._SparseTensorPlaceholder()
input0_val = self._SparseTensorValue_5x6(np.arange(6))
input1_val = self._SparseTensorValue_3x4(np.arange(6))
serialized0 = tf.serialize_sparse(sp_input0)
serialized1 = tf.serialize_sparse(sp_input1)
serialized_concat = tf.stack([serialized0, serialized1])
sp_deserialized = tf.deserialize_many_sparse(
serialized_concat, dtype=tf.int64)
with self.assertRaisesOpError(
r"Requested SparseTensor of type int64 but "
r"SparseTensor\[0\].values.dtype\(\) == int32"):
sess.run(
sp_deserialized, {sp_input0: input0_val, sp_input1: input1_val})
示例4: testDeserializeFailsInconsistentRank
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def testDeserializeFailsInconsistentRank(self):
with self.test_session(use_gpu=False) as sess:
sp_input0 = self._SparseTensorPlaceholder()
sp_input1 = self._SparseTensorPlaceholder()
input0_val = self._SparseTensorValue_5x6(np.arange(6))
input1_val = self._SparseTensorValue_1x1x1()
serialized0 = tf.serialize_sparse(sp_input0)
serialized1 = tf.serialize_sparse(sp_input1)
serialized_concat = tf.stack([serialized0, serialized1])
sp_deserialized = tf.deserialize_many_sparse(
serialized_concat, dtype=tf.int32)
with self.assertRaisesOpError(
r"Inconsistent rank across SparseTensors: rank prior to "
r"SparseTensor\[1\] was: 3 but rank of SparseTensor\[1\] is: 4"):
sess.run(
sp_deserialized, {sp_input0: input0_val, sp_input1: input1_val})
示例5: testDeserializeFailsInvalidProto
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def testDeserializeFailsInvalidProto(self):
with self.test_session(use_gpu=False) as sess:
sp_input0 = self._SparseTensorPlaceholder()
input0_val = self._SparseTensorValue_5x6(np.arange(6))
serialized0 = tf.serialize_sparse(sp_input0)
serialized1 = ["a", "b", "c"]
serialized_concat = tf.stack([serialized0, serialized1])
sp_deserialized = tf.deserialize_many_sparse(
serialized_concat, dtype=tf.int32)
with self.assertRaisesOpError(
r"Could not parse serialized_sparse\[1, 0\]"):
sess.run(sp_deserialized, {sp_input0: input0_val})
示例6: _read_word_record
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def _read_word_record(data_queue):
reader = tf.TFRecordReader() # Construct a general reader
key, example_serialized = reader.read(data_queue)
feature_map = {
'image/encoded': tf.FixedLenFeature( [], dtype=tf.string,
default_value='' ),
'image/labels': tf.VarLenFeature( dtype=tf.int64 ),
'image/width': tf.FixedLenFeature( [1], dtype=tf.int64,
default_value=1 ),
'image/filename': tf.FixedLenFeature([], dtype=tf.string,
default_value='' ),
'text/string': tf.FixedLenFeature([], dtype=tf.string,
default_value='' ),
'text/length': tf.FixedLenFeature( [1], dtype=tf.int64,
default_value=1 )
}
features = tf.parse_single_example( example_serialized, feature_map )
image = tf.image.decode_jpeg( features['image/encoded'], channels=1 ) #gray
width = tf.cast( features['image/width'], tf.int32) # for ctc_loss
label = tf.serialize_sparse( features['image/labels'] ) # for batching
length = features['text/length']
text = features['text/string']
filename = features['image/filename']
return image,width,label,length,text,filename
示例7: preprocess_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def preprocess_fn( data ):
"""Parse the elements of the dataset"""
feature_map = {
'image/encoded' : tf.FixedLenFeature( [], dtype=tf.string,
default_value='' ),
'image/labels' : tf.VarLenFeature( dtype=tf.int64 ),
'image/width' : tf.FixedLenFeature( [1], dtype=tf.int64,
default_value=1 ),
'image/filename' : tf.FixedLenFeature( [], dtype=tf.string,
default_value='' ),
'text/string' : tf.FixedLenFeature( [], dtype=tf.string,
default_value='' ),
'text/length' : tf.FixedLenFeature( [1], dtype=tf.int64,
default_value=1 )
}
features = tf.parse_single_example( data, feature_map )
# Initialize fields according to feature map
# Convert to grayscale
image = tf.image.decode_jpeg( features['image/encoded'], channels=1 )
width = tf.cast( features['image/width'], tf.int32 ) # for ctc_loss
label = tf.serialize_sparse( features['image/labels'] ) # for batching
length = features['text/length']
text = features['text/string']
image = preprocess_image( image )
return image, width, label, length, text
示例8: _ReadExamples
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import serialize_sparse [as 别名]
def _ReadExamples(filename_queue, shape, using_ctc, reader=None):
"""Builds network input tensor ops for TF Example.
Args:
filename_queue: Queue of filenames, from tf.train.string_input_producer
shape: ImageShape with the desired shape of the input.
using_ctc: Take the unpadded_class labels instead of padded.
reader: Function that returns an actual reader to read Examples from
input files. If None, uses tf.TFRecordReader().
Returns:
image: Float Tensor containing the input image scaled to [-1.28, 1.27].
height: Tensor int64 containing the height of the image.
width: Tensor int64 containing the width of the image.
labels: Serialized SparseTensor containing the int64 labels.
text: Tensor string of the utf8 truth text.
"""
if reader:
reader = reader()
else:
reader = tf.TFRecordReader()
_, example_serialized = reader.read(filename_queue)
example_serialized = tf.reshape(example_serialized, shape=[])
features = tf.parse_single_example(
example_serialized,
{'image/encoded': parsing_ops.FixedLenFeature(
[1], dtype=tf.string, default_value=''),
'image/text': parsing_ops.FixedLenFeature(
[1], dtype=tf.string, default_value=''),
'image/class': parsing_ops.VarLenFeature(dtype=tf.int64),
'image/unpadded_class': parsing_ops.VarLenFeature(dtype=tf.int64),
'image/height': parsing_ops.FixedLenFeature(
[1], dtype=tf.int64, default_value=1),
'image/width': parsing_ops.FixedLenFeature(
[1], dtype=tf.int64, default_value=1)})
if using_ctc:
labels = features['image/unpadded_class']
else:
labels = features['image/class']
labels = tf.serialize_sparse(labels)
image = tf.reshape(features['image/encoded'], shape=[], name='encoded')
image = _ImageProcessing(image, shape)
height = tf.reshape(features['image/height'], [-1])
width = tf.reshape(features['image/width'], [-1])
text = tf.reshape(features['image/text'], shape=[])
return image, height, width, labels, text