本文整理汇总了Python中tensorflow.sequence_mask方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.sequence_mask方法的具体用法?Python tensorflow.sequence_mask怎么用?Python tensorflow.sequence_mask使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.sequence_mask方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: embed_subword
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def embed_subword(x, size, dim, sequence_length, seed=0, mask_zero=False, maxlen=None):
# std = np.sqrt(2 / dim)
std = 0.001
minval = -std
maxval = std
emb = tf.Variable(tf.random_uniform([size, dim], minval, maxval, dtype=tf.float32, seed=seed))
# None * max_seq_len * max_word_len * embed_dim
out = tf.nn.embedding_lookup(emb, x)
if mask_zero:
# word_len: None * max_seq_len
# mask: shape=None * max_seq_len * max_word_len
mask = tf.sequence_mask(sequence_length, maxlen)
mask = tf.expand_dims(mask, axis=-1)
mask = tf.cast(mask, tf.float32)
out = out * mask
# None * max_seq_len * embed_dim
# according to facebook subword paper, it's sum
out = tf.reduce_sum(out, axis=2)
return out
示例2: exp_mask
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def exp_mask(logits, mask, mask_is_length=True):
"""Exponential mask for logits.
Logits cannot be masked with 0 (i.e. multiplying boolean mask)
because expnentiating 0 becomes 1. `exp_mask` adds very large negative value
to `False` portion of `mask` so that the portion is effectively ignored
when exponentiated, e.g. softmaxed.
Args:
logits: Arbitrary-rank logits tensor to be masked.
mask: `boolean` type mask tensor.
Could be same shape as logits (`mask_is_length=False`)
or could be length tensor of the logits (`mask_is_length=True`).
mask_is_length: `bool` value. whether `mask` is boolean mask.
Returns:
Masked logits with the same shape of `logits`.
"""
if mask_is_length:
mask = tf.sequence_mask(mask, maxlen=tf.shape(logits)[-1])
return logits + (1.0 - tf.cast(mask, 'float')) * VERY_LARGE_NEGATIVE_VALUE
示例3: _discount_reward_tensor_1d
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def _discount_reward_tensor_1d(reward, sequence_length,
discount=1., dtype=None):
if sequence_length is None:
raise ValueError('sequence_length must not be `None` for 1D reward.')
batch_size = tf.shape(reward)[0]
max_seq_length = tf.reduce_max(sequence_length)
dtype = dtype or reward.dtype
if discount == 1.:
dmat = tf.ones(
tf.concat([[batch_size], [max_seq_length]], 0), dtype=dtype)
else:
mask = tf.sequence_mask(sequence_length, dtype=dtype)
mask = tf.concat([mask[:, 1:], tf.zeros_like(mask[:, -1:])], axis=1)
# Make each row = [discount, ..., discount, 1, ..., 1]
dmat = mask * discount + (1 - mask)
dmat = tf.cumprod(dmat, axis=1, reverse=True)
disc_reward = dmat * tf.expand_dims(reward, -1)
disc_reward = mask_sequences(
disc_reward, sequence_length, dtype=dtype, tensor_rank=2)
return disc_reward
示例4: __create_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def __create_loss(self):
print('Creating loss...')
start = time.time()
self.decoder_logits = tf.identity(self.decoder_outputs_train.rnn_output, name="decoder_logits")
self.decoder_pred = tf.argmax(self.decoder_logits, axis=-1, name="decoder_pred")
# masking the sequence in order to calculate the error according to the calculated
mask = tf.sequence_mask(self.decoder_inputs_length_train, maxlen=self.decoder_max_length, dtype=tf.float32,
name="masks")
# Control loss dimensions with `average_across_timesteps` and `average_across_batch`
self.loss = tf.contrib.seq2seq.sequence_loss(logits=self.decoder_logits,
targets=self.decoder_targets_train,
average_across_timesteps=False,
average_across_batch=False,
weights=mask,
name="batch_loss")
print('Building loss in: ', time.time() - start, ' secs')
示例5: cross_entropy_sequence_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def cross_entropy_sequence_loss(logits, targets, sequence_length):
"""Calculates the per-example cross-entropy loss for a sequence of logits and
masks out all losses passed the sequence length.
Args:
logits: Logits of shape `[B, T, vocab_size]`
targets: Target classes of shape `[B, T]`
sequence_length: An int32 tensor of shape `[B]` corresponding
to the length of each input
Returns:
A tensor of shape [T, B] that contains the loss per example, per time step.
"""
with tf.compat.v1.variable_scope('sequence_loss'):
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=targets)
# Mask out the losses we don't care about
loss_mask = tf.sequence_mask(
tf.cast(sequence_length, tf.int32),
tf.cast(tf.shape(targets)[1], tf.int32)
)
losses = losses * tf.cast(loss_mask, tf.float32)
return losses
示例6: token_seq_truncted
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def token_seq_truncted(token_seq, finished_index, max_length):
seq_shape = bert_utils.get_shape_list(token_seq, expected_rank=[2,3])
batch_size = seq_shape[0]
token_seq = token_seq[:, :max_length]
token_seq = tf.concat([token_seq, finished_index*tf.cast(tf.ones((batch_size, 1)), tf.int32)], axis=-1)
token_seq = tf.cast(token_seq, tf.int32)
seq_shape = bert_utils.get_shape_list(token_seq, expected_rank=[2,3])
match_indices = tf.where( # [[5, 5, 2, 5, 4],
tf.equal(finished_index, token_seq), # [0, 5, 2, 3, 5],
x=tf.range(seq_shape[1]) * tf.ones_like(token_seq), # [5, 1, 5, 5, 5]]
y=(seq_shape[1])*tf.ones_like(token_seq))
finished_pos = tf.reduce_min(match_indices, axis=1)
sequence_mask = tf.sequence_mask(finished_pos+1, maxlen=seq_shape[1])
token_seq = tf.cast(sequence_mask, tf.float32) * tf.cast(token_seq, tf.float32)
return tf.cast(token_seq, tf.int32)
示例7: lengths_to_area_mask
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def lengths_to_area_mask(feature_length, length, max_area_size):
"""Generates a non-padding mask for areas based on lengths.
Args:
feature_length: a tensor of [batch_size]
length: the length of the batch
max_area_size: the maximum area size considered
Returns:
mask: a tensor in shape of [batch_size, num_areas]
"""
paddings = tf.cast(tf.expand_dims(
tf.logical_not(
tf.sequence_mask(feature_length, maxlen=length)), 2), tf.float32)
_, _, area_sum, _, _ = compute_area_features(paddings,
max_area_width=max_area_size)
mask = tf.squeeze(tf.logical_not(tf.cast(area_sum, tf.bool)), [2])
return mask
示例8: test_softmax_masking
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def test_softmax_masking(self):
max_len = 3
axis = 1
logits = tf.eye(max_len)
seq_len = [1,2,2]
mask = tf.sequence_mask(seq_len, max_len)
r = softmax_with_masking(logits, mask, axis)
r = np.array(r)
d = math.exp(1) + math.exp(0)
expected = np.array([
[1,0,0],
[math.exp(0)/d, math.exp(1)/d,0],
[0.5, 0.5, 0],
])
np.testing.assert_almost_equal(r, expected)
示例9: test_softmax_masking2
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def test_softmax_masking2(self):
max_len = 3
axis = 1
logits = tf.zeros([max_len, max_len])
seq_len = [1,2,3]
mask = tf.sequence_mask(seq_len, max_len)
r = softmax_with_masking(logits, mask, axis)
r = np.array(r)
expected = np.array([
[1.0,0.0,0],
[0.5,0.5,0],
[1.0/3.0, 1.0/3.0, 1.0/3.0],
])
np.testing.assert_almost_equal(r, expected)
示例10: mask_3d
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def mask_3d(sequences, sequence_lengths, mask_value, dimension=2):
"""
Given a batch of matrices, each with shape m x n, mask the values in each
row after the positions indicated in sentence_sizes.
This function is supposed to mask the last columns in the raw attention
matrix (e_{i, j}) in cases where the sentence2 is smaller than the
maximum.
:param sequences: tensor with shape (batch_size, m, n)
:param sequence_lengths: tensor with shape (batch_size) containing the sentence sizes that
should be limited
:param mask_value: scalar value to assign to items after sentence size
:param dimension: over which dimension to mask values
:return: a tensor with the same shape as `values`
"""
if dimension == 1:
sequences = tf.transpose(sequences, [0, 2, 1])
time_steps1, time_steps2 = tf.shape(sequences)[1], tf.shape(sequences)[2]
ones = tf.ones_like(sequences, dtype=tf.int32)
pad_values = mask_value * tf.cast(ones, tf.float32)
mask = tf.sequence_mask(sequence_lengths, time_steps2)
# mask is (batch_size, sentence2_size). we have to tile it for 3d
mask3d = tf.tile(tf.expand_dims(mask, 1), (1, time_steps1, 1))
masked = tf.where(mask3d, sequences, pad_values)
return tf.transpose(masked, [0, 2, 1]) if dimension == 1 else masked
示例11: add_loss_op
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def add_loss_op(self):
"""Defines the loss"""
if self.config.use_crf:
log_likelihood, trans_params = tf.contrib.crf.crf_log_likelihood(
self.logits, self.labels, self.sequence_lengths)
self.trans_params = trans_params # need to evaluate it for decoding
self.loss = tf.reduce_mean(-log_likelihood)
else:
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.logits, labels=self.labels)
mask = tf.sequence_mask(self.sequence_lengths)
losses = tf.boolean_mask(losses, mask)
self.loss = tf.reduce_mean(losses)
# for tensorboard
tf.summary.scalar("loss", self.loss)
示例12: _compute_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def _compute_loss(self, logits):
"""Compute optimization loss."""
target_output = self.iterator.target_output
if self.time_major:
target_output = tf.transpose(target_output)
max_time = self.get_max_time(target_output)
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_output, logits=logits)
target_weights = tf.sequence_mask(self.iterator.target_sequence_length, max_time, dtype=logits.dtype)
if self.time_major:
target_weights = tf.transpose(target_weights)
loss = tf.reduce_sum(crossent * target_weights) / tf.to_float(self.batch_size)
return loss
示例13: SeqLayerNorm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def SeqLayerNorm(input, seq_len, centre=True, scale=True): # layer norm for 3D tensor.
mask = tf.cast(tf.expand_dims(tf.sequence_mask(seq_len), 2), tf.float32) # convert mask to float.
input_dim = input.get_shape().as_list()[-1] # get number of input dimensions.
den = tf.multiply(tf.reduce_sum(mask, axis=1, keepdims=True), input_dim) # inverse of the number of input dimensions.
mean = tf.divide(tf.reduce_sum(tf.multiply(input, mask), axis=[1, 2], keepdims=True), den) # mean over the input dimensions.
var = tf.divide(tf.reduce_sum(tf.multiply(tf.square(tf.subtract(input, mean)), mask), axis=[1, 2],
keepdims = True), den) # variance over the input dimensions.
if centre:
beta = tf.get_variable("beta", input_dim, dtype=tf.float32,
initializer=tf.constant_initializer(0.0), trainable=True)
else: beta = tf.constant(np.zeros(input_dim), name="beta", dtype=tf.float32)
if scale:
gamma = tf.get_variable("Gamma", input_dim, dtype=tf.float32,
initializer=tf.constant_initializer(1.0), trainable=True)
else: gamma = tf.constant(np.ones(input_dim), name="Gamma", dtype=tf.float32)
norm = tf.nn.batch_normalization(input, mean, var, offset=beta, scale=gamma,
variance_epsilon = 1e-12) # normalise batch.
norm = tf.multiply(norm, mask)
return norm
示例14: example
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def example(self, s, d, s_len, d_len, snr):
"""
Compute example for Deep Xi, i.e. observation (noisy-speech STMS)
and target (mapped a priori SNR).
Argument/s:
s - clean speech (dtype=tf.int32).
d - noise (dtype=tf.int32).
s_len - clean-speech length without padding (samples).
d_len - noise length without padding (samples).
snr - SNR level.
Returns:
x_STMS - noisy-speech short-time magnitude spectrum.
xi_bar - mapped a priori SNR.
n_frames - number of time-domain frames.
"""
s_STMS, d_STMS, x_STMS, n_frames = self.mix(s, d, s_len, d_len, snr)
mask = tf.expand_dims(tf.cast(tf.sequence_mask(n_frames), tf.float32), 2)
xi_bar = tf.multiply(self.xi_bar(s_STMS, d_STMS), mask)
return x_STMS, xi_bar, n_frames
示例15: update_metrics
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import sequence_mask [as 别名]
def update_metrics(self, metrics, predictions, labels):
weights = tf.sequence_mask(
labels["length"], maxlen=tf.shape(labels["tags"])[1], dtype=tf.float32)
metrics["accuracy"].update_state(
labels["tags_id"], predictions["tags_id"], sample_weight=weights)
if self.tagging_scheme in ("bioes",):
flag_fn = None
if self.tagging_scheme == "bioes":
flag_fn = flag_bioes_tags
gold_flags, predicted_flags = tf.numpy_function(
flag_fn,
[labels["tags"], predictions["tags"], labels["length"]],
[tf.bool, tf.bool])
metrics["f1"].update_state(gold_flags, predicted_flags)